
If\[A=\left( \begin{matrix}
1 & 2 \\
3 & 4 \\
\end{matrix} \right)\]. Verify that \[A\left( adjA \right)=\left( adjA \right)A=\left| A \right|I\] where I is the order 2 Identity matrix.
Answer
617.7k+ views
Hint: We calculate the determinant of A. If \[A=\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\] then its determinant is given by
\[\left| A \right|=ad-bc\] and then we proceed to find the value of adj(A) and then substitute in the given term from the left hand side to verify the result.
Complete step-by-step answer:
Given \[A=\left( \begin{matrix}
1 & 2 \\
3 & 4 \\
\end{matrix} \right)\]
First of all, we calculate determinant of A,
If \[A=\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\] then its determinant is given by
\[\left| A \right|=ad-bc\]
Hence using the formula in \[A=\left( \begin{matrix}
1 & 2 \\
3 & 4 \\
\end{matrix} \right)\] we get,
\[\left| A \right|=4-6=-2\]
Now we see the process to calculate adj(A) of a matrix A of order 2, there is a direct substitution to calculate the Adjoint of the Matrix A
If we are given matrix\[A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right)\] then \[(adjA)=\left( \begin{matrix}
{{a}_{22}} & -{{a}_{12}} \\
-{{a}_{21}} & {{a}_{11}} \\
\end{matrix} \right)\] , that is adj(A) of a order 2 matrix is obtained by interchanging the elements at the main( or principal) diagonal and taking negative of the elements at non principal diagonal.
Applying the above procedure for the above given matrix \[A=\left( \begin{matrix}
1 & 2 \\
3 & 4 \\
\end{matrix} \right)\] we get, \[(adjA)=\left( \begin{matrix}
4 & -2 \\
-3 & 1 \\
\end{matrix} \right)\]
Now we will verify the given expression\[A\left( adjA \right)=\left( adjA \right)A=\left| A \right|I\]
To do this we compute \[\left( adjA \right)A\]and \[A\left( adjA \right)\]separately and then check if they are equal
Computing the left-hand side of the above equation we have,
\[\begin{align}
& A\left( adjA \right)=\left( \begin{matrix}
1 & 2 \\
3 & 4 \\
\end{matrix} \right)\left( \begin{matrix}
4 & -2 \\
-3 & 1 \\
\end{matrix} \right) \\
& \\
& \Rightarrow A\left( adjA \right)=\left( \begin{matrix}
-2 & 0 \\
0 & -2 \\
\end{matrix} \right) \\
& \\
& \Rightarrow A\left( adjA \right)=(-2)\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)............(i) \\
\end{align}\]
Now similarly we calculate (adjA)A
\[\begin{align}
& \Rightarrow \left( adjA \right)A=\left( \begin{matrix}
4 & -2 \\
-3 & 1 \\
\end{matrix} \right)\left( \begin{matrix}
1 & 2 \\
3 & 4 \\
\end{matrix} \right) \\
& \\
& \Rightarrow \left( adjA \right)A=\left( \begin{matrix}
-2 & 0 \\
0 & -2 \\
\end{matrix} \right) \\
& \\
& \Rightarrow \left( adjA \right)A=(-2)\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)..........(ii) \\
\end{align}\]
From (i) and (ii) we get,
\[A(adjA)=(adjA)A=(-2)\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)=\left| A \right|I\]
Hence, we have obtained the result.
Note: The possibility of the mistake is that A(adjA) and (adjA)A can be taken same without calculating separately which is wrong as Matrices do not commute with respect to multiplication. There can be chances when A(adjA) and (adjA)A are different.
a & b \\
c & d \\
\end{matrix} \right)\] then its determinant is given by
\[\left| A \right|=ad-bc\] and then we proceed to find the value of adj(A) and then substitute in the given term from the left hand side to verify the result.
Complete step-by-step answer:
Given \[A=\left( \begin{matrix}
1 & 2 \\
3 & 4 \\
\end{matrix} \right)\]
First of all, we calculate determinant of A,
If \[A=\left( \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right)\] then its determinant is given by
\[\left| A \right|=ad-bc\]
Hence using the formula in \[A=\left( \begin{matrix}
1 & 2 \\
3 & 4 \\
\end{matrix} \right)\] we get,
\[\left| A \right|=4-6=-2\]
Now we see the process to calculate adj(A) of a matrix A of order 2, there is a direct substitution to calculate the Adjoint of the Matrix A
If we are given matrix\[A=\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} \\
{{a}_{21}} & {{a}_{22}} \\
\end{matrix} \right)\] then \[(adjA)=\left( \begin{matrix}
{{a}_{22}} & -{{a}_{12}} \\
-{{a}_{21}} & {{a}_{11}} \\
\end{matrix} \right)\] , that is adj(A) of a order 2 matrix is obtained by interchanging the elements at the main( or principal) diagonal and taking negative of the elements at non principal diagonal.
Applying the above procedure for the above given matrix \[A=\left( \begin{matrix}
1 & 2 \\
3 & 4 \\
\end{matrix} \right)\] we get, \[(adjA)=\left( \begin{matrix}
4 & -2 \\
-3 & 1 \\
\end{matrix} \right)\]
Now we will verify the given expression\[A\left( adjA \right)=\left( adjA \right)A=\left| A \right|I\]
To do this we compute \[\left( adjA \right)A\]and \[A\left( adjA \right)\]separately and then check if they are equal
Computing the left-hand side of the above equation we have,
\[\begin{align}
& A\left( adjA \right)=\left( \begin{matrix}
1 & 2 \\
3 & 4 \\
\end{matrix} \right)\left( \begin{matrix}
4 & -2 \\
-3 & 1 \\
\end{matrix} \right) \\
& \\
& \Rightarrow A\left( adjA \right)=\left( \begin{matrix}
-2 & 0 \\
0 & -2 \\
\end{matrix} \right) \\
& \\
& \Rightarrow A\left( adjA \right)=(-2)\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)............(i) \\
\end{align}\]
Now similarly we calculate (adjA)A
\[\begin{align}
& \Rightarrow \left( adjA \right)A=\left( \begin{matrix}
4 & -2 \\
-3 & 1 \\
\end{matrix} \right)\left( \begin{matrix}
1 & 2 \\
3 & 4 \\
\end{matrix} \right) \\
& \\
& \Rightarrow \left( adjA \right)A=\left( \begin{matrix}
-2 & 0 \\
0 & -2 \\
\end{matrix} \right) \\
& \\
& \Rightarrow \left( adjA \right)A=(-2)\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)..........(ii) \\
\end{align}\]
From (i) and (ii) we get,
\[A(adjA)=(adjA)A=(-2)\left( \begin{matrix}
1 & 0 \\
0 & 1 \\
\end{matrix} \right)=\left| A \right|I\]
Hence, we have obtained the result.
Note: The possibility of the mistake is that A(adjA) and (adjA)A can be taken same without calculating separately which is wrong as Matrices do not commute with respect to multiplication. There can be chances when A(adjA) and (adjA)A are different.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

