
If\[{2^{\text{x}}} + {2^{\text{y}}} = {2^{{\text{x + y}}}}\], then $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$is equal to
$
{\text{A}}{\text{. }}\dfrac{{{{\text{2}}^{\text{x}}} + {2^{\text{y}}}}}{{{2^{\text{x}}} - {2^{\text{y}}}}} \\
{\text{B}}{\text{. }}\dfrac{{{{\text{2}}^{\text{x}}} + {2^{\text{y}}}}}{{1 + {2^{{\text{x + y}}}}}} \\
{\text{C}}{\text{. }}{{\text{2}}^{{\text{x - y}}}}\left( {\dfrac{{{{\text{2}}^{\text{y}}} - 1}}{{1 - {2^{\text{x}}}}}} \right) \\
{\text{D}}{\text{. }}\dfrac{{{{\text{2}}^{{\text{x + y}}}} - {2^{\text{x}}}}}{{{2^{\text{y}}}}} \\
$
Answer
618.9k+ views
Hint: In order to find the value of$\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$, we differentiate the given equation with respect to x and bring all $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$terms to the left hand side of the equation. $\left( {\dfrac{{\text{d}}}{{{\text{dx}}}}{{\text{a}}^{\text{x}}} = {{\text{a}}^{\text{x}}}{\text{loga}}} \right)$.
Complete step-by-step answer:
Given Data, \[{2^{\text{x}}} + {2^{\text{y}}} = {2^{{\text{(x + y)}}}}\]
Differentiating the given equation w.r.t x, we get
\[{2^{\text{x}}}{\text{log2}} + {2^{\text{y}}}{\text{log2}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = {2^{{\text{(x + y)}}}}{\text{log2}}\dfrac{{{\text{d}}}}{{{\text{dx}}}}\left( {{\text{x + y}}} \right)\] ___________________ $\dfrac{{\text{d}}}{{{\text{dx}}}}{{\text{a}}^{\text{y}}} = {{\text{a}}^{\text{y}}}{\text{loga}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(y)}}$
$ \Rightarrow {2^{\text{x}}}{\text{log2}} + {2^{\text{y}}}{\text{log2}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = {2^{{\text{(x + y)}}}}{\text{log2}}\left( {{\text{1 + }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}} \right)$
Bringing all $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$terms to the left hand side, we get
$
\Rightarrow \left( {{{\text{2}}^{\text{y}}} - {{\text{2}}^{{\text{(x+y)}}}}} \right)\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = {{\text{2}}^{{\text{x + y}}}} - {{\text{2}}^{\text{x}}} \\
\Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{{{\text{2}}^{{\text{(x + y)}}}} - {{\text{2}}^{\text{x}}}}}{{{{\text{2}}^{\text{y}}} - {{\text{2}}^{{\text{x + y}}}}}} = \dfrac{{{{\text{2}}^{\text{x}}}\left( {{{\text{2}}^{\text{y}}} - 1} \right)}}{{{{\text{2}}^{\text{y}}}\left( {{\text{1 - }}{{\text{2}}^{\text{x}}}} \right)}} = \dfrac{{{{\text{2}}^{{\text{(x - y)}}}}\left( {{{\text{2}}^{\text{y}}} - 1} \right)}}{{{\text{1 - }}{{\text{2}}^{\text{x}}}}} \\
$
Hence Option C is the correct answer.
Note: In order to solve questions of this type the key is to differentiate the given equation and bring all the required terms to one side of the equation to easily find its answer. Basic knowledge of differentiations of common terms is necessary in solving equations like these.
Complete step-by-step answer:
Given Data, \[{2^{\text{x}}} + {2^{\text{y}}} = {2^{{\text{(x + y)}}}}\]
Differentiating the given equation w.r.t x, we get
\[{2^{\text{x}}}{\text{log2}} + {2^{\text{y}}}{\text{log2}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = {2^{{\text{(x + y)}}}}{\text{log2}}\dfrac{{{\text{d}}}}{{{\text{dx}}}}\left( {{\text{x + y}}} \right)\] ___________________ $\dfrac{{\text{d}}}{{{\text{dx}}}}{{\text{a}}^{\text{y}}} = {{\text{a}}^{\text{y}}}{\text{loga}}\dfrac{{\text{d}}}{{{\text{dx}}}}{\text{(y)}}$
$ \Rightarrow {2^{\text{x}}}{\text{log2}} + {2^{\text{y}}}{\text{log2}}\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = {2^{{\text{(x + y)}}}}{\text{log2}}\left( {{\text{1 + }}\dfrac{{{\text{dy}}}}{{{\text{dx}}}}} \right)$
Bringing all $\dfrac{{{\text{dy}}}}{{{\text{dx}}}}$terms to the left hand side, we get
$
\Rightarrow \left( {{{\text{2}}^{\text{y}}} - {{\text{2}}^{{\text{(x+y)}}}}} \right)\dfrac{{{\text{dy}}}}{{{\text{dx}}}} = {{\text{2}}^{{\text{x + y}}}} - {{\text{2}}^{\text{x}}} \\
\Rightarrow \dfrac{{{\text{dy}}}}{{{\text{dx}}}} = \dfrac{{{{\text{2}}^{{\text{(x + y)}}}} - {{\text{2}}^{\text{x}}}}}{{{{\text{2}}^{\text{y}}} - {{\text{2}}^{{\text{x + y}}}}}} = \dfrac{{{{\text{2}}^{\text{x}}}\left( {{{\text{2}}^{\text{y}}} - 1} \right)}}{{{{\text{2}}^{\text{y}}}\left( {{\text{1 - }}{{\text{2}}^{\text{x}}}} \right)}} = \dfrac{{{{\text{2}}^{{\text{(x - y)}}}}\left( {{{\text{2}}^{\text{y}}} - 1} \right)}}{{{\text{1 - }}{{\text{2}}^{\text{x}}}}} \\
$
Hence Option C is the correct answer.
Note: In order to solve questions of this type the key is to differentiate the given equation and bring all the required terms to one side of the equation to easily find its answer. Basic knowledge of differentiations of common terms is necessary in solving equations like these.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

