
If $z=x+iy$ satisfies $\arg (z-1)=\arg (z+3i),$ then value of $\left( x-1 \right):y$ is equal to
$\begin{align}
& \text{A}\text{. 2:1} \\
& \text{B}\text{. 1:3} \\
& \text{C}\text{. -1:3} \\
& \text{D}\text{. None of these} \\
\end{align}$
Answer
513k+ views
Hint: First we substitute the value of $z$ in the given expression $\arg (z-1)=\arg (z+3i),$ and simplify the expression. Then use the property $\arg \left( a+ib \right)={{\tan }^{-1}}\dfrac{b}{a}$ and substitute the value. When we simplify the equations we get the value of $\left( x-1 \right):y$.
Complete step by step answer:
We have given that $z=x+iy$ satisfies $\arg (z-1)=\arg (z+3i),$
We have to find the value of $\left( x-1 \right):y$
Now, as given $z=x+iy$, when substitute the value in the given arg, we get
$\begin{align}
& \arg (z-1)=\arg (z+3i) \\
& \Rightarrow \arg (x+iy-1)=\arg (x+iy+3i) \\
& \Rightarrow \arg \left( \left( x-1 \right)+iy \right)=\arg \left( x+i\left( y+3 \right) \right) \\
\end{align}$
Now, we know that $\arg \left( a+ib \right)={{\tan }^{-1}}\dfrac{b}{a}$
So, the equation becomes
$\Rightarrow {{\tan }^{-1}}\dfrac{y}{x-1}={{\tan }^{-1}}\dfrac{y+3}{x}$
When, we simplify the above equation we get
$\Rightarrow \dfrac{y}{x-1}=\dfrac{y+3}{x}$
Now, cross multiply the equations, we get
$\begin{align}
& \Rightarrow xy=\left( y+3 \right)\left( x-1 \right) \\
& \Rightarrow xy=xy-y+3x-3 \\
& \Rightarrow xy-xy=-y+3x-3 \\
& \Rightarrow 0=-y+3x-3 \\
& \Rightarrow y=3\left( x-1 \right) \\
\end{align}$
Now, we have to find the value of $\left( x-1 \right):y$, so from above equation we get
$\dfrac{\left( x-1 \right)}{y}=\dfrac{1}{3}$
So, the correct answer is “Option B”.
Note: Alternatively students try to solve the question directly by simplifying the equations as
\[\begin{align}
& \arg (z-1)=\arg (z+3i) \\
& \Rightarrow \arg (x+iy-1)=\arg (x+iy+3i) \\
& \Rightarrow \arg \left( \left( x-1 \right)+iy \right)=\arg \left( x+i\left( y+3 \right) \right) \\
& \Rightarrow \left( \left( x-1 \right)+iy \right)=\left( x+i\left( y+3 \right) \right) \\
& \Rightarrow \left( \left( x-1 \right)+iy \right)=\left( x+iy+3i \right) \\
& \Rightarrow x-1+iy=x+iy+3i \\
& \Rightarrow x-1=x+3i \\
\end{align}\]
but didn’t reach the conclusion. So, it is necessary to apply the property $\arg \left( a+ib \right)={{\tan }^{-1}}\dfrac{b}{a}$.
Complete step by step answer:
We have given that $z=x+iy$ satisfies $\arg (z-1)=\arg (z+3i),$
We have to find the value of $\left( x-1 \right):y$
Now, as given $z=x+iy$, when substitute the value in the given arg, we get
$\begin{align}
& \arg (z-1)=\arg (z+3i) \\
& \Rightarrow \arg (x+iy-1)=\arg (x+iy+3i) \\
& \Rightarrow \arg \left( \left( x-1 \right)+iy \right)=\arg \left( x+i\left( y+3 \right) \right) \\
\end{align}$
Now, we know that $\arg \left( a+ib \right)={{\tan }^{-1}}\dfrac{b}{a}$
So, the equation becomes
$\Rightarrow {{\tan }^{-1}}\dfrac{y}{x-1}={{\tan }^{-1}}\dfrac{y+3}{x}$
When, we simplify the above equation we get
$\Rightarrow \dfrac{y}{x-1}=\dfrac{y+3}{x}$
Now, cross multiply the equations, we get
$\begin{align}
& \Rightarrow xy=\left( y+3 \right)\left( x-1 \right) \\
& \Rightarrow xy=xy-y+3x-3 \\
& \Rightarrow xy-xy=-y+3x-3 \\
& \Rightarrow 0=-y+3x-3 \\
& \Rightarrow y=3\left( x-1 \right) \\
\end{align}$
Now, we have to find the value of $\left( x-1 \right):y$, so from above equation we get
$\dfrac{\left( x-1 \right)}{y}=\dfrac{1}{3}$
So, the correct answer is “Option B”.
Note: Alternatively students try to solve the question directly by simplifying the equations as
\[\begin{align}
& \arg (z-1)=\arg (z+3i) \\
& \Rightarrow \arg (x+iy-1)=\arg (x+iy+3i) \\
& \Rightarrow \arg \left( \left( x-1 \right)+iy \right)=\arg \left( x+i\left( y+3 \right) \right) \\
& \Rightarrow \left( \left( x-1 \right)+iy \right)=\left( x+i\left( y+3 \right) \right) \\
& \Rightarrow \left( \left( x-1 \right)+iy \right)=\left( x+iy+3i \right) \\
& \Rightarrow x-1+iy=x+iy+3i \\
& \Rightarrow x-1=x+3i \\
\end{align}\]
but didn’t reach the conclusion. So, it is necessary to apply the property $\arg \left( a+ib \right)={{\tan }^{-1}}\dfrac{b}{a}$.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Where can free central placentation be seen class 11 biology CBSE

What is the molecular weight of NaOH class 11 chemistry CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE
