
If $z={{\left( \dfrac{\sqrt{3}}{2}+\dfrac{i}{2} \right)}^{5}}+{{\left( \dfrac{\sqrt{3}}{2}-\dfrac{i}{2} \right)}^{5}}$ , then
(a) Re(z) = 0
(b) Im(z) = 0
(c) $\operatorname{Re}(z)>0,\operatorname{Im}(z)>0$
(d) $\operatorname{Re}(z)>0,\operatorname{Im}(z)<0$
Answer
612.3k+ views
Hint: The complex number is of the form $z=x+iy$, where x is known as real part of complex number z and y is known as imaginary part of complex number z and you can use the formula ${{e}^{i\theta }}=\cos \theta +i\sin \theta $.
Complete step-by-step answer:
Let us consider the given expression
$z={{\left( \dfrac{\sqrt{3}}{2}+\dfrac{i}{2} \right)}^{5}}+{{\left( \dfrac{\sqrt{3}}{2}-\dfrac{i}{2} \right)}^{5}}$
We know that $\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}$ and $\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}$ and we replace this values in the given expression,
$z={{\left( \cos \left( \dfrac{\pi }{6} \right)+i\sin \left( \dfrac{\pi }{6} \right) \right)}^{5}}+{{\left( \cos \left( \dfrac{\pi }{6} \right)-i\sin \left( \dfrac{\pi }{6} \right) \right)}^{5}}$
We know that the Euler’s formula for the complex number, $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
$z={{\left( {{e}^{i\dfrac{\pi }{6}}} \right)}^{5}}+{{\left( {{e}^{-i\dfrac{\pi }{6}}} \right)}^{5}}$
By using the indices formula ${{\left( {{x}^{a}} \right)}^{b}}={{x}^{ab}}$ and we have
\[z={{e}^{i\dfrac{5\pi }{6}}}+{{e}^{-i\dfrac{5\pi }{6}}}\]
Again, applying the Euler’s formula of a complex number in the reserve order ${{e}^{i\theta }}=\cos \theta +i\sin \theta $
\[z=\left[ \cos \left( \dfrac{5\pi }{6} \right)+i\sin \left( \dfrac{5\pi }{6} \right) \right]+\left[ \cos \left( \dfrac{5\pi }{6} \right)-i\sin \left( \dfrac{5\pi }{6} \right) \right]\]
Rearrange the term $\dfrac{5\pi }{6}=\pi -\dfrac{\pi }{6}$ in the above expression, we get
\[z=\left[ \cos \left( \pi -\dfrac{\pi }{6} \right)+i\sin \left( \pi -\dfrac{\pi }{6} \right) \right]+\left[ \cos \left( \pi -\dfrac{\pi }{6} \right)-i\sin \left( \pi -\dfrac{\pi }{6} \right) \right]\]
Applying the allied angle formulas $\cos \left( \pi -\dfrac{\pi }{6} \right)=-\cos \dfrac{\pi }{6}$ and $\sin \left( \pi -\dfrac{\pi }{6} \right)=\sin \dfrac{\pi }{6}$, we get
\[z=\left[ -\cos \left( \dfrac{\pi }{6} \right)+i\sin \left( \dfrac{\pi }{6} \right) \right]+\left[ -\cos \left( \dfrac{\pi }{6} \right)-i\sin \left( \dfrac{\pi }{6} \right) \right]\]
Rearranging the terms, we get
\[z=-\cos \left( \dfrac{\pi }{6} \right)+i\sin \left( \dfrac{\pi }{6} \right)-\cos \left( \dfrac{\pi }{6} \right)-i\sin \left( \dfrac{\pi }{6} \right)\]
Cancelling the term $i\sin \left( \dfrac{\pi }{6} \right)$ on the right side, we get
\[z=-\cos \left( \dfrac{\pi }{6} \right)-\cos \left( \dfrac{\pi }{6} \right)\]
\[z=-2\cos \left( \dfrac{\pi }{6} \right)\]
We have \[\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}\] and replace this value in the above expression, we get
\[z=-2\times \dfrac{\sqrt{3}}{2}\]
\[z=-\sqrt{3}\]
It can be also written as
\[z=-\sqrt{3}+i0\]
Now comparing this complex number with the general complex number $z=x+iy$, we get
$x=-\sqrt{3}$ and $y=0$
Hence the imaginary part of the given expression is zero.
Therefore, the correct option for the given question is option (b).
Note: Alternatively, the question is solved as follows
The polar form the complex number is $z=r\left( \cos \theta +i\sin \theta \right)$ where ${{r}^{2}}=\dfrac{3}{4}+\dfrac{1}{4}=1$ and $\theta =\dfrac{\pi }{6}$. Therefore$z={{r}^{5}}\left[ {{e}^{i5\theta }}+{{e}^{-i5\theta }} \right]$, put r = 1 and by using De-Moivre’s theorem. This gives $z=2\cos 5\theta $. Hence it is a real number that means the imaginary part in the complex number is zero.
Complete step-by-step answer:
Let us consider the given expression
$z={{\left( \dfrac{\sqrt{3}}{2}+\dfrac{i}{2} \right)}^{5}}+{{\left( \dfrac{\sqrt{3}}{2}-\dfrac{i}{2} \right)}^{5}}$
We know that $\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}$ and $\sin \left( \dfrac{\pi }{6} \right)=\dfrac{1}{2}$ and we replace this values in the given expression,
$z={{\left( \cos \left( \dfrac{\pi }{6} \right)+i\sin \left( \dfrac{\pi }{6} \right) \right)}^{5}}+{{\left( \cos \left( \dfrac{\pi }{6} \right)-i\sin \left( \dfrac{\pi }{6} \right) \right)}^{5}}$
We know that the Euler’s formula for the complex number, $\cos \theta +i\sin \theta ={{e}^{i\theta }}$
$z={{\left( {{e}^{i\dfrac{\pi }{6}}} \right)}^{5}}+{{\left( {{e}^{-i\dfrac{\pi }{6}}} \right)}^{5}}$
By using the indices formula ${{\left( {{x}^{a}} \right)}^{b}}={{x}^{ab}}$ and we have
\[z={{e}^{i\dfrac{5\pi }{6}}}+{{e}^{-i\dfrac{5\pi }{6}}}\]
Again, applying the Euler’s formula of a complex number in the reserve order ${{e}^{i\theta }}=\cos \theta +i\sin \theta $
\[z=\left[ \cos \left( \dfrac{5\pi }{6} \right)+i\sin \left( \dfrac{5\pi }{6} \right) \right]+\left[ \cos \left( \dfrac{5\pi }{6} \right)-i\sin \left( \dfrac{5\pi }{6} \right) \right]\]
Rearrange the term $\dfrac{5\pi }{6}=\pi -\dfrac{\pi }{6}$ in the above expression, we get
\[z=\left[ \cos \left( \pi -\dfrac{\pi }{6} \right)+i\sin \left( \pi -\dfrac{\pi }{6} \right) \right]+\left[ \cos \left( \pi -\dfrac{\pi }{6} \right)-i\sin \left( \pi -\dfrac{\pi }{6} \right) \right]\]
Applying the allied angle formulas $\cos \left( \pi -\dfrac{\pi }{6} \right)=-\cos \dfrac{\pi }{6}$ and $\sin \left( \pi -\dfrac{\pi }{6} \right)=\sin \dfrac{\pi }{6}$, we get
\[z=\left[ -\cos \left( \dfrac{\pi }{6} \right)+i\sin \left( \dfrac{\pi }{6} \right) \right]+\left[ -\cos \left( \dfrac{\pi }{6} \right)-i\sin \left( \dfrac{\pi }{6} \right) \right]\]
Rearranging the terms, we get
\[z=-\cos \left( \dfrac{\pi }{6} \right)+i\sin \left( \dfrac{\pi }{6} \right)-\cos \left( \dfrac{\pi }{6} \right)-i\sin \left( \dfrac{\pi }{6} \right)\]
Cancelling the term $i\sin \left( \dfrac{\pi }{6} \right)$ on the right side, we get
\[z=-\cos \left( \dfrac{\pi }{6} \right)-\cos \left( \dfrac{\pi }{6} \right)\]
\[z=-2\cos \left( \dfrac{\pi }{6} \right)\]
We have \[\cos \left( \dfrac{\pi }{6} \right)=\dfrac{\sqrt{3}}{2}\] and replace this value in the above expression, we get
\[z=-2\times \dfrac{\sqrt{3}}{2}\]
\[z=-\sqrt{3}\]
It can be also written as
\[z=-\sqrt{3}+i0\]
Now comparing this complex number with the general complex number $z=x+iy$, we get
$x=-\sqrt{3}$ and $y=0$
Hence the imaginary part of the given expression is zero.
Therefore, the correct option for the given question is option (b).
Note: Alternatively, the question is solved as follows
The polar form the complex number is $z=r\left( \cos \theta +i\sin \theta \right)$ where ${{r}^{2}}=\dfrac{3}{4}+\dfrac{1}{4}=1$ and $\theta =\dfrac{\pi }{6}$. Therefore$z={{r}^{5}}\left[ {{e}^{i5\theta }}+{{e}^{-i5\theta }} \right]$, put r = 1 and by using De-Moivre’s theorem. This gives $z=2\cos 5\theta $. Hence it is a real number that means the imaginary part in the complex number is zero.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

