
If $|{z_1}| = |{z_2}| = |{z_3}| = ...... = |{z_n}| = 1$ , then prove that $|{z_1} + {z_2} + {z_3} + ..... + {z_n}| = \left| {\dfrac{1}{{{z_1}}}} \right. + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}} + ..... + \left. {\dfrac{1}{{{z_n}}}} \right|$.
Answer
550.8k+ views
Hint:For solving this particular problem we first take the left hand side of the expression then try to convert it in the form of the expression present in the right side of the equation. We can convert the left side by multiplying both numerator and denominator by the conjugate of the corresponding complex numerator, then use ${\left| {{z_1}} \right|^2} = {z_1}\overline {{z_1}} $ , for simplifying the expression use the given expression that is $|{z_1}| = |{z_2}| = |{z_3}| = ...... = |{z_n}| = 1$ . After evaluating and substituting we get our required solution.
Formula Used:
For solving this particular solution ,we used the following relationship,
${\left| {{z_1}} \right|^2} = {z_1}\overline {{z_1}} $ , here \[\overline {{z_1}} \] means the conjugate of ${z_1}$.
Complete step by step answer:
We have given that,$|{z_1}| = |{z_2}| = |{z_3}| = ...... = |{z_n}| = 1$
To prove: $|{z_1} + {z_2} + {z_3} + ..... + {z_n}| = \left| {\dfrac{1}{{{z_1}}}} \right. + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}} + ..... + \left. {\dfrac{1}{{{z_n}}}} \right|$
Proof :Taking L.H.S of the given expression that is ,
$|{z_1} + {z_2} + {z_3} + ..... + {z_n}|$
Multiplying both numerator and denominator by the conjugate of the corresponding complex numerator,
$\left| {\dfrac{{{z_1}\overline {{z_1}} }}{{\overline {{z_1}} }}} \right. + \dfrac{{{z_2}\overline {{z_2}} }}{{\overline {{z_2}} }} + \dfrac{{{z_3}\overline {{z_3}} }}{{\overline {{z_3}} }} + ..... + \left. {\dfrac{{{z_n}\overline {{z_n}} }}{{\overline {{z_n}} }}} \right|$
Now we know that ${\left| {{z_1}} \right|^2} = {z_1}\overline {{z_1}}$, multiplication of the complex number with the conjugate of the complex number we get magnitude which represents the distance of the complex number from the origin.
Therefore ,
$\left| {\dfrac{{{z_1}\overline {{z_1}} }}{{\overline {{z_1}} }}} \right. + \dfrac{{{z_2}\overline {{z_2}} }}{{\overline {{z_2}} }} + \dfrac{{{z_3}\overline {{z_3}} }}{{\overline {{z_3}} }} + ..... + \left. {\dfrac{{{z_n}\overline {{z_n}} }}{{\overline {{z_n}} }}} \right| = \left| {\dfrac{{{{\left| {{z_1}} \right|}^2}}}{{\overline {{z_1}} }}} \right. + \dfrac{{{{\left| {{z_2}} \right|}^2}}}{{\overline {{z_2}} }} + \dfrac{{{{\left| {{z_3}} \right|}^2}}}{{\overline {{z_3}} }} + ..... + \left. {\dfrac{{{{\left| {{z_n}} \right|}^2}}}{{\overline {{z_n}} }}} \right|.............(A)$
Now we know that,
$|{z_1}| = |{z_2}| = |{z_3}| = ...... = |{z_n}| = 1$ (given)
Now Squaring the given expression, we get the following ,
$|{z_1}{|^2} = |{z_2}{|^2} = |{z_3}{|^2} = ...... = |{z_n}{|^2} = {1^2}......(1)$
Now substitute the value of $(1)$ in $(A)$ ,
$\left| {\dfrac{{{{\left| {{z_1}} \right|}^2}}}{{\overline {{z_1}} }}} \right. + \dfrac{{{{\left| {{z_2}} \right|}^2}}}{{\overline {{z_2}} }} + \dfrac{{{{\left| {{z_3}} \right|}^2}}}{{\overline {{z_3}} }} + ..... + \left. {\dfrac{{{{\left| {{z_n}} \right|}^2}}}{{\overline {{z_n}} }}} \right| \\
\Rightarrow\left| {\dfrac{1}{{\overline {{z_1}} }}} \right. + \dfrac{1}{{\overline {{z_2}} }} + \dfrac{1}{{\overline {{z_3}} }} + ..... + \left. {\dfrac{1}{{\overline {{z_n}} }}} \right| \\
\Rightarrow \overline {\left| {\dfrac{1}{{{z_1}}}} \right. + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}} + ..... + \left. {\dfrac{1}{{{z_n}}}} \right|} \\
\therefore \left| {\dfrac{1}{{{z_1}}}} \right. + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}} + ..... + \left. {\dfrac{1}{{{z_n}}}} \right|$
Hence, Proved.
Note:As we know that $z = x + yi$ , which is the representation of the complex number. And $z = x - yi$ , is the conjugate of the complex number.Now multiplication of the complex number with the conjugate of the complex number we get magnitude which represents the distance of the complex number from the origin.
Formula Used:
For solving this particular solution ,we used the following relationship,
${\left| {{z_1}} \right|^2} = {z_1}\overline {{z_1}} $ , here \[\overline {{z_1}} \] means the conjugate of ${z_1}$.
Complete step by step answer:
We have given that,$|{z_1}| = |{z_2}| = |{z_3}| = ...... = |{z_n}| = 1$
To prove: $|{z_1} + {z_2} + {z_3} + ..... + {z_n}| = \left| {\dfrac{1}{{{z_1}}}} \right. + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}} + ..... + \left. {\dfrac{1}{{{z_n}}}} \right|$
Proof :Taking L.H.S of the given expression that is ,
$|{z_1} + {z_2} + {z_3} + ..... + {z_n}|$
Multiplying both numerator and denominator by the conjugate of the corresponding complex numerator,
$\left| {\dfrac{{{z_1}\overline {{z_1}} }}{{\overline {{z_1}} }}} \right. + \dfrac{{{z_2}\overline {{z_2}} }}{{\overline {{z_2}} }} + \dfrac{{{z_3}\overline {{z_3}} }}{{\overline {{z_3}} }} + ..... + \left. {\dfrac{{{z_n}\overline {{z_n}} }}{{\overline {{z_n}} }}} \right|$
Now we know that ${\left| {{z_1}} \right|^2} = {z_1}\overline {{z_1}}$, multiplication of the complex number with the conjugate of the complex number we get magnitude which represents the distance of the complex number from the origin.
Therefore ,
$\left| {\dfrac{{{z_1}\overline {{z_1}} }}{{\overline {{z_1}} }}} \right. + \dfrac{{{z_2}\overline {{z_2}} }}{{\overline {{z_2}} }} + \dfrac{{{z_3}\overline {{z_3}} }}{{\overline {{z_3}} }} + ..... + \left. {\dfrac{{{z_n}\overline {{z_n}} }}{{\overline {{z_n}} }}} \right| = \left| {\dfrac{{{{\left| {{z_1}} \right|}^2}}}{{\overline {{z_1}} }}} \right. + \dfrac{{{{\left| {{z_2}} \right|}^2}}}{{\overline {{z_2}} }} + \dfrac{{{{\left| {{z_3}} \right|}^2}}}{{\overline {{z_3}} }} + ..... + \left. {\dfrac{{{{\left| {{z_n}} \right|}^2}}}{{\overline {{z_n}} }}} \right|.............(A)$
Now we know that,
$|{z_1}| = |{z_2}| = |{z_3}| = ...... = |{z_n}| = 1$ (given)
Now Squaring the given expression, we get the following ,
$|{z_1}{|^2} = |{z_2}{|^2} = |{z_3}{|^2} = ...... = |{z_n}{|^2} = {1^2}......(1)$
Now substitute the value of $(1)$ in $(A)$ ,
$\left| {\dfrac{{{{\left| {{z_1}} \right|}^2}}}{{\overline {{z_1}} }}} \right. + \dfrac{{{{\left| {{z_2}} \right|}^2}}}{{\overline {{z_2}} }} + \dfrac{{{{\left| {{z_3}} \right|}^2}}}{{\overline {{z_3}} }} + ..... + \left. {\dfrac{{{{\left| {{z_n}} \right|}^2}}}{{\overline {{z_n}} }}} \right| \\
\Rightarrow\left| {\dfrac{1}{{\overline {{z_1}} }}} \right. + \dfrac{1}{{\overline {{z_2}} }} + \dfrac{1}{{\overline {{z_3}} }} + ..... + \left. {\dfrac{1}{{\overline {{z_n}} }}} \right| \\
\Rightarrow \overline {\left| {\dfrac{1}{{{z_1}}}} \right. + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}} + ..... + \left. {\dfrac{1}{{{z_n}}}} \right|} \\
\therefore \left| {\dfrac{1}{{{z_1}}}} \right. + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}} + ..... + \left. {\dfrac{1}{{{z_n}}}} \right|$
Hence, Proved.
Note:As we know that $z = x + yi$ , which is the representation of the complex number. And $z = x - yi$ , is the conjugate of the complex number.Now multiplication of the complex number with the conjugate of the complex number we get magnitude which represents the distance of the complex number from the origin.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

