If ${z_1}$ is a complex number other than $ - 1$ such that $\left| {{z_1}} \right| = 1$ and ${z_2} = \dfrac{{{z_1} - 1}}{{{z_1} + 1}}$, then show that the real parts of ${z_2}$ is zero.
Answer
Verified
437.7k+ views
Hint: As in the question we have given ${z_1}$ is a complex number let’s consider ${z_1} = x + iy$ where $x$ is real part and $iy$ is imaginary part. Using all the given conditions which are given in the question we can find the ${z_2}$ and arrive at the required answer.
Complete step by step answer:
Here in this question we have given that ${z_1}$ is a complex number, so we can write ${z_1}$ as ${z_1} = x + iy$ where $x$ is real part and $iy$ is imaginary part.
As we have given $\left| {{z_1}} \right| = 1$ we can write as below.
$\left| {{z_1}} \right| = 1$
$ \Rightarrow \sqrt {{x^2} + {y^2}} = 1$
Squaring on both the sides and simplifying, we get
$ \Rightarrow {x^2} + {y^2} = 1$
Also we have given ${z_1} \ne - 1$
$ \Rightarrow x + iy \ne - 1$
$ \Rightarrow x \ne - 1$
Now, they have asked to show the real part of ${z_2}$ is zero in the expression ${z_2} = \dfrac{{{z_1} - 1}}{{{z_1} + 1}}$.
Now, in the above expression of ${z_2}$ replace ${z_1} = x + iy$ and simplify the expression. Therefore, we get
${z_2} = \dfrac{{\left( {x + iy} \right) - 1}}{{\left( {x + iy} \right) + 1}}$
The above expression can be written as below, for the simplification purpose.
$ \Rightarrow {z_2} = \dfrac{{\left( {x - 1} \right) + iy}}{{\left( {x + 1} \right) + iy}}$
Now multiply and divide the above expression by conjugate of the value, which is as below.
$ \Rightarrow {z_2} = \dfrac{{\left( {x - 1} \right) + iy}}{{\left( {x + 1} \right) + iy}} \times \dfrac{{\left( {x - 1} \right) - iy}}{{\left( {x + 1} \right) - iy}}$
Now, we simplify the above expression. We get
$ \Rightarrow {z_2} = \dfrac{{\left( {x - 1} \right)\left( {x + 1} \right) - \left( {x - 1} \right)y.i + \left( {x + 1} \right)y.i - {y^2}{i^2}}}{{{{\left( {{x^2} + 1} \right)}^2} - {{\left( {iy} \right)}^2}}}$
$ \Rightarrow {z_2} = \dfrac{{\left( {x - 1} \right)\left( {x + 1} \right) - \left( {x - 1} \right)y.i + \left( {x + 1} \right)y.i - {y^2}{i^2}}}{{{{\left( {{x^2} + 1} \right)}^2} - {{\left( {iy} \right)}^2}}}$
Now, simplify the above expression by separating the real and imaginary terms, we write as
$ \Rightarrow {z_2} = \dfrac{{\left( {{x^2} - 1 + {y^2}} \right) + i\left( { - xy + y + xy + y} \right)}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$ (we know ${i^2} = - 1$)
$ \Rightarrow {z_2} = \dfrac{{\left( {{x^2} + {y^2} - 1} \right) + 2iy}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$
By using the condition which we have ${x^2} + {y^2} = 1$ in the above equation, we get
$ \Rightarrow {z_2} = \dfrac{{\left( {1 - 1} \right) + 2iy}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$
$ \Rightarrow {z_2} = \dfrac{{2iy}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$
The above expression can be written as
$ \Rightarrow {z_2} = 0 + i.\dfrac{{2y}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$
In the above expression we have the real part as $0$ and the imaginary part as $i.\dfrac{{2y}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$.
Hence we have proved that the real parts of ${z_2}$ are zero.
Note:
Whenever we have this type of problem, first we need to consider complex values and then when it comes to the simplification part, it’s very important to be careful while solving using the conjugate values of the corresponding values. If you fail to take the correct conjugate values then you may end up with the wrong answer.
Complete step by step answer:
Here in this question we have given that ${z_1}$ is a complex number, so we can write ${z_1}$ as ${z_1} = x + iy$ where $x$ is real part and $iy$ is imaginary part.
As we have given $\left| {{z_1}} \right| = 1$ we can write as below.
$\left| {{z_1}} \right| = 1$
$ \Rightarrow \sqrt {{x^2} + {y^2}} = 1$
Squaring on both the sides and simplifying, we get
$ \Rightarrow {x^2} + {y^2} = 1$
Also we have given ${z_1} \ne - 1$
$ \Rightarrow x + iy \ne - 1$
$ \Rightarrow x \ne - 1$
Now, they have asked to show the real part of ${z_2}$ is zero in the expression ${z_2} = \dfrac{{{z_1} - 1}}{{{z_1} + 1}}$.
Now, in the above expression of ${z_2}$ replace ${z_1} = x + iy$ and simplify the expression. Therefore, we get
${z_2} = \dfrac{{\left( {x + iy} \right) - 1}}{{\left( {x + iy} \right) + 1}}$
The above expression can be written as below, for the simplification purpose.
$ \Rightarrow {z_2} = \dfrac{{\left( {x - 1} \right) + iy}}{{\left( {x + 1} \right) + iy}}$
Now multiply and divide the above expression by conjugate of the value, which is as below.
$ \Rightarrow {z_2} = \dfrac{{\left( {x - 1} \right) + iy}}{{\left( {x + 1} \right) + iy}} \times \dfrac{{\left( {x - 1} \right) - iy}}{{\left( {x + 1} \right) - iy}}$
Now, we simplify the above expression. We get
$ \Rightarrow {z_2} = \dfrac{{\left( {x - 1} \right)\left( {x + 1} \right) - \left( {x - 1} \right)y.i + \left( {x + 1} \right)y.i - {y^2}{i^2}}}{{{{\left( {{x^2} + 1} \right)}^2} - {{\left( {iy} \right)}^2}}}$
$ \Rightarrow {z_2} = \dfrac{{\left( {x - 1} \right)\left( {x + 1} \right) - \left( {x - 1} \right)y.i + \left( {x + 1} \right)y.i - {y^2}{i^2}}}{{{{\left( {{x^2} + 1} \right)}^2} - {{\left( {iy} \right)}^2}}}$
Now, simplify the above expression by separating the real and imaginary terms, we write as
$ \Rightarrow {z_2} = \dfrac{{\left( {{x^2} - 1 + {y^2}} \right) + i\left( { - xy + y + xy + y} \right)}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$ (we know ${i^2} = - 1$)
$ \Rightarrow {z_2} = \dfrac{{\left( {{x^2} + {y^2} - 1} \right) + 2iy}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$
By using the condition which we have ${x^2} + {y^2} = 1$ in the above equation, we get
$ \Rightarrow {z_2} = \dfrac{{\left( {1 - 1} \right) + 2iy}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$
$ \Rightarrow {z_2} = \dfrac{{2iy}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$
The above expression can be written as
$ \Rightarrow {z_2} = 0 + i.\dfrac{{2y}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$
In the above expression we have the real part as $0$ and the imaginary part as $i.\dfrac{{2y}}{{{{\left( {x + 1} \right)}^2} + {y^2}}}$.
Hence we have proved that the real parts of ${z_2}$ are zero.
Note:
Whenever we have this type of problem, first we need to consider complex values and then when it comes to the simplification part, it’s very important to be careful while solving using the conjugate values of the corresponding values. If you fail to take the correct conjugate values then you may end up with the wrong answer.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE