
If $ z $ is a complex number, then the locus of the point $ z $ satisfying $ \arg \left( \dfrac{z-i}{z+i} \right)=\dfrac{\pi }{4} $ is
A. circle with centre $ \left( -1,0 \right) $ and radius $ \sqrt{2} $
B. circle with centre $ \left( 0,0 \right) $ and radius $ \sqrt{2} $
C. circle with centre $ \left( 0,1 \right) $ and radius $ \sqrt{2} $
D. circle with centre $ \left( 1,1 \right) $ and radius $ \sqrt{2} $
Answer
491.7k+ views
Hint: We first assume the complex number $ z=a+ib $ . We find the simplified form of the expression $ \dfrac{z-i}{z+i} $ . We rationalise it and find the argument of the complex form. We take the equation and equate it with the general form of the circle to find the solution.
Complete step-by-step answer:
Let us assume the complex number $ z=a+ib $ where $ a,b\in \mathbb{R} $ . The argument for $ z=a+ib $ can be denoted as $ {{\tan }^{-1}}\left( \dfrac{b}{a} \right) $ .
The function $ \dfrac{z-i}{z+i} $ becomes $ \dfrac{z-i}{z+i}=\dfrac{a+ib-i}{a+ib+i}=\dfrac{a+i\left( b-1 \right)}{a+i\left( b+1 \right)} $ .
We first apply the rationalisation of complex numbers for $ \dfrac{a+i\left( b-1 \right)}{a+i\left( b+1 \right)} $ .
We multiply $ a-i\left( b+1 \right) $ to both the numerator and denominator of the fraction.
So, \[\dfrac{a+i\left( b-1 \right)}{a+i\left( b+1 \right)}\times \dfrac{a-i\left( b+1 \right)}{a-i\left( b+1 \right)}=\dfrac{{{a}^{2}}-{{i}^{2}}\left( b-1 \right)\left( b+1 \right)-ia\left( b+1 \right)+ia\left( b-1 \right)}{{{a}^{2}}-{{i}^{2}}{{\left( b+1 \right)}^{2}}}\].
We used the theorem of \[\left( a+b \right)\times \left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
\[\begin{align}
& \dfrac{a+i\left( b-1 \right)}{a+i\left( b+1 \right)} \\
& =\dfrac{\left( {{a}^{2}}+{{b}^{2}}-1 \right)-2ai}{{{a}^{2}}+{{\left( b+1 \right)}^{2}}} \\
& =\dfrac{\left( {{a}^{2}}+{{b}^{2}}-1 \right)}{{{a}^{2}}+{{\left( b+1 \right)}^{2}}}+i\dfrac{-2a}{{{a}^{2}}+{{\left( b+1 \right)}^{2}}} \\
\end{align}\]
Therefore,
\[\begin{align}
& \arg \left( \dfrac{z-i}{z+i} \right)=\dfrac{\pi }{4} \\
& \Rightarrow \arg \left( \dfrac{\left( {{a}^{2}}+{{b}^{2}}-1 \right)}{{{a}^{2}}+{{\left( b+1 \right)}^{2}}}+i\dfrac{-2a}{{{a}^{2}}+{{\left( b+1 \right)}^{2}}} \right)=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{-2a}{{{a}^{2}}+{{b}^{2}}-1} \right)=\dfrac{\pi }{4} \\
\end{align}\]
This gives \[\dfrac{-2a}{{{a}^{2}}+{{b}^{2}}-1}=\tan \left( \dfrac{\pi }{4} \right)=1\]. Simplifying we get \[{{a}^{2}}+{{b}^{2}}-1+2a=0\].
This is an equation of the circle of \[{{\left( a+1 \right)}^{2}}+{{b}^{2}}=2\]. The circle is with centre $ \left( -1,0 \right) $ and radius $ \sqrt{2} $ as the general equation of circle is \[{{\left( x-m \right)}^{2}}+{{\left( y-n \right)}^{2}}={{r}^{2}}\] having centre $ \left( m,n \right) $ and radius $ r $ .
The correct option is A.
So, the correct answer is “Option A”.
Note: The integer power value of every even number on $ i $ will give the real number. Odd numbers of power value give back the imaginary part. The relation $ {{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1 $ can also be represented as the unit circle on the complex plane.
Complete step-by-step answer:
Let us assume the complex number $ z=a+ib $ where $ a,b\in \mathbb{R} $ . The argument for $ z=a+ib $ can be denoted as $ {{\tan }^{-1}}\left( \dfrac{b}{a} \right) $ .
The function $ \dfrac{z-i}{z+i} $ becomes $ \dfrac{z-i}{z+i}=\dfrac{a+ib-i}{a+ib+i}=\dfrac{a+i\left( b-1 \right)}{a+i\left( b+1 \right)} $ .
We first apply the rationalisation of complex numbers for $ \dfrac{a+i\left( b-1 \right)}{a+i\left( b+1 \right)} $ .
We multiply $ a-i\left( b+1 \right) $ to both the numerator and denominator of the fraction.
So, \[\dfrac{a+i\left( b-1 \right)}{a+i\left( b+1 \right)}\times \dfrac{a-i\left( b+1 \right)}{a-i\left( b+1 \right)}=\dfrac{{{a}^{2}}-{{i}^{2}}\left( b-1 \right)\left( b+1 \right)-ia\left( b+1 \right)+ia\left( b-1 \right)}{{{a}^{2}}-{{i}^{2}}{{\left( b+1 \right)}^{2}}}\].
We used the theorem of \[\left( a+b \right)\times \left( a-b \right)={{a}^{2}}-{{b}^{2}}\].
\[\begin{align}
& \dfrac{a+i\left( b-1 \right)}{a+i\left( b+1 \right)} \\
& =\dfrac{\left( {{a}^{2}}+{{b}^{2}}-1 \right)-2ai}{{{a}^{2}}+{{\left( b+1 \right)}^{2}}} \\
& =\dfrac{\left( {{a}^{2}}+{{b}^{2}}-1 \right)}{{{a}^{2}}+{{\left( b+1 \right)}^{2}}}+i\dfrac{-2a}{{{a}^{2}}+{{\left( b+1 \right)}^{2}}} \\
\end{align}\]
Therefore,
\[\begin{align}
& \arg \left( \dfrac{z-i}{z+i} \right)=\dfrac{\pi }{4} \\
& \Rightarrow \arg \left( \dfrac{\left( {{a}^{2}}+{{b}^{2}}-1 \right)}{{{a}^{2}}+{{\left( b+1 \right)}^{2}}}+i\dfrac{-2a}{{{a}^{2}}+{{\left( b+1 \right)}^{2}}} \right)=\dfrac{\pi }{4} \\
& \Rightarrow {{\tan }^{-1}}\left( \dfrac{-2a}{{{a}^{2}}+{{b}^{2}}-1} \right)=\dfrac{\pi }{4} \\
\end{align}\]
This gives \[\dfrac{-2a}{{{a}^{2}}+{{b}^{2}}-1}=\tan \left( \dfrac{\pi }{4} \right)=1\]. Simplifying we get \[{{a}^{2}}+{{b}^{2}}-1+2a=0\].
This is an equation of the circle of \[{{\left( a+1 \right)}^{2}}+{{b}^{2}}=2\]. The circle is with centre $ \left( -1,0 \right) $ and radius $ \sqrt{2} $ as the general equation of circle is \[{{\left( x-m \right)}^{2}}+{{\left( y-n \right)}^{2}}={{r}^{2}}\] having centre $ \left( m,n \right) $ and radius $ r $ .
The correct option is A.
So, the correct answer is “Option A”.
Note: The integer power value of every even number on $ i $ will give the real number. Odd numbers of power value give back the imaginary part. The relation $ {{i}^{2}}=-1,{{i}^{3}}=-i,{{i}^{4}}=1 $ can also be represented as the unit circle on the complex plane.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

