
If \[{\text{z = }}\dfrac{{{\text{1 + i}}}}{{\sqrt {\text{2}} }}\] ,then the value of \[{{\text{z}}^{1929}}\] is
A. \[1 + i\]
B. -1
C. \[\dfrac{{{\text{1 + i}}}}{{\text{2}}}\]
D. \[\dfrac{{{\text{1 + i}}}}{{\sqrt {\text{2}} }}\]
Answer
508.5k+ views
Hint: Here we have to use the idea of \[|z|\] and argument of z . Than use the concept of writing of \[z = x + iy\] as \[|z|{e^{i\theta }},\] where \[\theta = {\tan ^{ - 1}}\dfrac{y}{x}\] . And then proceed with dividing the angle and apply general trigonometry.
Complete step by step answer:
As per the given equation, \[z = \dfrac{{1 + i}}{{\sqrt 2 }}\]
We have \[x = \dfrac{1}{{\sqrt 2 }}\] and \[y = \dfrac{1}{{\sqrt 2 }}\] ,
As, \[|z| = \sqrt {{x^2} + {y^2}} \]
On substituting values of x and y we get,
\[ \Rightarrow \] \[{\text{|z}}| = \sqrt {{{(\dfrac{1}{{\sqrt 2 }})}^2} + {{(\dfrac{1}{{\sqrt 2 }})}^2}} \]
On simplification we get,
\[ \Rightarrow \] \[{\text{|z}}| = \sqrt {\dfrac{1}{2} + \dfrac{1}{2}} \]
\[ \Rightarrow \] \[{\text{|z}}| = \sqrt 1 \]
On taking positive square root we get,
\[ \Rightarrow \] \[|z| = 1\]
Now proceeding with the calculation of the argument of z.
\[{\text{$\theta$ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{y}}}{{\text{x}}}\]
On substituting the value of x and y we get,
\[ \Rightarrow \theta = {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{{\sqrt 2 }}}}\]
On simplification we get,
\[
\Rightarrow \theta = {\tan ^{ - 1}}(1) \\
\Rightarrow \theta = \dfrac{\pi }{4} \\
\]
Hence, the given equation can also be converted into the form of \[{\text{|z|}}{{\text{e}}^{{\text{${i\theta}$ }}}}\],
$ \Rightarrow z$ = \[{\text{|z|}}{{\text{e}}^{{\text{${i\theta}$ }}}}\]
\[
\Rightarrow {\text{z = }}{{\text{e}}^{{\text{i}}\dfrac{{\text{$\pi$ }}}{{\text{4}}}}} \\
\]
So,
\[ \Rightarrow {{\text{z}}^{{\text{1929}}}}{\text{ = }}{{\text{e}}^{{\text{(1929)i}}\dfrac{{\text{$\pi$ }}}{{\text{4}}}}}\]
Now as \[1929(\dfrac{\pi }{4}) = 482\pi + \dfrac{\pi }{4}\], so we get,
\[ \Rightarrow {{\text{z}}^{{\text{1929}}}}{\text{ = }}{{\text{e}}^{{\text{i(482$\pi$ + }}\dfrac{{\text{$\pi$ }}}{{\text{4}}}{\text{)}}}}\]
Now as \[482\pi + \dfrac{\pi }{4} = \dfrac{\pi }{4}\], so we get,
\[ \Rightarrow {{\text{z}}^{{\text{1929}}}}{\text{ = }}{{\text{e}}^{{\text{i}}\dfrac{{\text{$\pi$ }}}{{\text{4}}}}}\]
As we have \[{\text{z = }}{{\text{e}}^{{\text{i}}\dfrac{{\text{$\pi$ }}}{{\text{4}}}}}\]
\[ \Rightarrow {{\text{z}}^{{\text{1929}}}}{\text{ = z = }}\dfrac{{{\text{1 + i}}}}{{\sqrt {\text{2}} }}\]
Hence, option (d) is our correct answer.
Note: A complex number is a number that can be expressed in the form \[a{\text{ }} + {\text{ }}bi\], where a and b are real numbers, and i represents the imaginary unit. Because no real number satisfies this equation, i is called an imaginary number. Where \[\theta = \arg z\] and so we can state that, much like the polar form, there are an infinite number of possible exponential forms for a given complex number. Also, because any two arguments for a give complex number differ by an integer multiple of \[2$\pi$ \]. we will sometimes write the exponential form as, \[z = r{e^{i(\theta + 2$\pi$ n)}},n = \pm 1, \pm 2...\]
Complete step by step answer:
As per the given equation, \[z = \dfrac{{1 + i}}{{\sqrt 2 }}\]
We have \[x = \dfrac{1}{{\sqrt 2 }}\] and \[y = \dfrac{1}{{\sqrt 2 }}\] ,
As, \[|z| = \sqrt {{x^2} + {y^2}} \]
On substituting values of x and y we get,
\[ \Rightarrow \] \[{\text{|z}}| = \sqrt {{{(\dfrac{1}{{\sqrt 2 }})}^2} + {{(\dfrac{1}{{\sqrt 2 }})}^2}} \]
On simplification we get,
\[ \Rightarrow \] \[{\text{|z}}| = \sqrt {\dfrac{1}{2} + \dfrac{1}{2}} \]
\[ \Rightarrow \] \[{\text{|z}}| = \sqrt 1 \]
On taking positive square root we get,
\[ \Rightarrow \] \[|z| = 1\]
Now proceeding with the calculation of the argument of z.
\[{\text{$\theta$ = ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\text{y}}}{{\text{x}}}\]
On substituting the value of x and y we get,
\[ \Rightarrow \theta = {\text{ta}}{{\text{n}}^{{\text{ - 1}}}}\dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{1}{{\sqrt 2 }}}}\]
On simplification we get,
\[
\Rightarrow \theta = {\tan ^{ - 1}}(1) \\
\Rightarrow \theta = \dfrac{\pi }{4} \\
\]
Hence, the given equation can also be converted into the form of \[{\text{|z|}}{{\text{e}}^{{\text{${i\theta}$ }}}}\],
$ \Rightarrow z$ = \[{\text{|z|}}{{\text{e}}^{{\text{${i\theta}$ }}}}\]
\[
\Rightarrow {\text{z = }}{{\text{e}}^{{\text{i}}\dfrac{{\text{$\pi$ }}}{{\text{4}}}}} \\
\]
So,
\[ \Rightarrow {{\text{z}}^{{\text{1929}}}}{\text{ = }}{{\text{e}}^{{\text{(1929)i}}\dfrac{{\text{$\pi$ }}}{{\text{4}}}}}\]
Now as \[1929(\dfrac{\pi }{4}) = 482\pi + \dfrac{\pi }{4}\], so we get,
\[ \Rightarrow {{\text{z}}^{{\text{1929}}}}{\text{ = }}{{\text{e}}^{{\text{i(482$\pi$ + }}\dfrac{{\text{$\pi$ }}}{{\text{4}}}{\text{)}}}}\]
Now as \[482\pi + \dfrac{\pi }{4} = \dfrac{\pi }{4}\], so we get,
\[ \Rightarrow {{\text{z}}^{{\text{1929}}}}{\text{ = }}{{\text{e}}^{{\text{i}}\dfrac{{\text{$\pi$ }}}{{\text{4}}}}}\]
As we have \[{\text{z = }}{{\text{e}}^{{\text{i}}\dfrac{{\text{$\pi$ }}}{{\text{4}}}}}\]
\[ \Rightarrow {{\text{z}}^{{\text{1929}}}}{\text{ = z = }}\dfrac{{{\text{1 + i}}}}{{\sqrt {\text{2}} }}\]
Hence, option (d) is our correct answer.
Note: A complex number is a number that can be expressed in the form \[a{\text{ }} + {\text{ }}bi\], where a and b are real numbers, and i represents the imaginary unit. Because no real number satisfies this equation, i is called an imaginary number. Where \[\theta = \arg z\] and so we can state that, much like the polar form, there are an infinite number of possible exponential forms for a given complex number. Also, because any two arguments for a give complex number differ by an integer multiple of \[2$\pi$ \]. we will sometimes write the exponential form as, \[z = r{e^{i(\theta + 2$\pi$ n)}},n = \pm 1, \pm 2...\]
Recently Updated Pages
Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Explain why it is said like that Mock drill is use class 11 social science CBSE

Which of the following blood vessels in the circulatory class 11 biology CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE
