
If $y={{\log }_{7}}\left( \log x \right)$ then, find $\dfrac{dy}{dx}$ .
Answer
594k+ views
Hint: We will apply the change base rule to convert base 7 to base ‘e’ by using the formula ${{\log }_{a}}b=\dfrac{{{\log }_{n}}b}{{{\log }_{n}}a}$. On applying this formula, we will get equation like $y={{\log }_{7}}\left( \log x \right)=\dfrac{{{\log }_{e}}\left( \log x \right)}{{{\log }_{e}}7}$. Then, we will differentiate both sides with respect to x and on solving we will get the answer. Formula used here are $\dfrac{d}{dx}{{\log }_{e}}x=\dfrac{1}{x}$, $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$.
Complete step-by-step answer:
Here, we have to differentiate the equation $y={{\log }_{7}}\left( \log x \right)$ with respect to x.
But we are having the equation in base 7. So, first we will apply the change base rule to convert base 7 into base ‘e’ i.e. natural base using the formula ${{\log }_{a}}b=\dfrac{{{\log }_{n}}b}{{{\log }_{n}}a}$
Here, we have $b=\log x$ and a as 7.
So, on using the rule, we can write it as
$y={{\log }_{7}}\left( \log x \right)=\dfrac{{{\log }_{e}}\left( \log x \right)}{{{\log }_{e}}7}$ …………………..(1)
Now, we will differentiate both sides with respect to x. So, we get as
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( \dfrac{{{\log }_{e}}\left( \log x \right)}{{{\log }_{e}}7} \right)$
Here, ${{\log }_{e}}7$ is constant term so we will take it out of differentiation and we know that $\dfrac{d}{dx}{{\log }_{e}}x=\dfrac{1}{x}$ . So, using this formula we will get equation as
$\dfrac{dy}{dx}=\dfrac{1}{{{\log }_{e}}7}\dfrac{d}{dx}{{\log }_{e}}\left( \log x \right)$
Now, we will be applying chain rule in differentiating $\dfrac{d}{dx}{{\log }_{e}}\left( \log x \right)$ . So, we get as
$\dfrac{dy}{dx}=\dfrac{1}{{{\log }_{e}}7}\times \dfrac{1}{\log x}\times \dfrac{d}{dx}\left( \log x \right)$
We also know that $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$ . On putting values, we get as
$\dfrac{dy}{dx}=\dfrac{1}{{{\log }_{e}}7}\times \dfrac{1}{\log x}\times \dfrac{1}{x}$
Thus, final answer will be
$\dfrac{dy}{dx}=\dfrac{1}{x{{\log }_{e}}7\left( \log x \right)}$
Note: Be careful while applying the change base formula. Sometimes instead of using ${{\log }_{a}}b=\dfrac{{{\log }_{n}}b}{{{\log }_{n}}a}$ , students take ${{\log }_{a}}b=\dfrac{{{\log }_{n}}a}{{{\log }_{n}}b}$ and whole answer gets wrong. If we use this wrong formula, then there are chances of getting incorrect answers and students will get confused while solving the equation. So, please remember the formula properly and then try to solve it.
Complete step-by-step answer:
Here, we have to differentiate the equation $y={{\log }_{7}}\left( \log x \right)$ with respect to x.
But we are having the equation in base 7. So, first we will apply the change base rule to convert base 7 into base ‘e’ i.e. natural base using the formula ${{\log }_{a}}b=\dfrac{{{\log }_{n}}b}{{{\log }_{n}}a}$
Here, we have $b=\log x$ and a as 7.
So, on using the rule, we can write it as
$y={{\log }_{7}}\left( \log x \right)=\dfrac{{{\log }_{e}}\left( \log x \right)}{{{\log }_{e}}7}$ …………………..(1)
Now, we will differentiate both sides with respect to x. So, we get as
$\dfrac{dy}{dx}=\dfrac{d}{dx}\left( \dfrac{{{\log }_{e}}\left( \log x \right)}{{{\log }_{e}}7} \right)$
Here, ${{\log }_{e}}7$ is constant term so we will take it out of differentiation and we know that $\dfrac{d}{dx}{{\log }_{e}}x=\dfrac{1}{x}$ . So, using this formula we will get equation as
$\dfrac{dy}{dx}=\dfrac{1}{{{\log }_{e}}7}\dfrac{d}{dx}{{\log }_{e}}\left( \log x \right)$
Now, we will be applying chain rule in differentiating $\dfrac{d}{dx}{{\log }_{e}}\left( \log x \right)$ . So, we get as
$\dfrac{dy}{dx}=\dfrac{1}{{{\log }_{e}}7}\times \dfrac{1}{\log x}\times \dfrac{d}{dx}\left( \log x \right)$
We also know that $\dfrac{d}{dx}\left( \log x \right)=\dfrac{1}{x}$ . On putting values, we get as
$\dfrac{dy}{dx}=\dfrac{1}{{{\log }_{e}}7}\times \dfrac{1}{\log x}\times \dfrac{1}{x}$
Thus, final answer will be
$\dfrac{dy}{dx}=\dfrac{1}{x{{\log }_{e}}7\left( \log x \right)}$
Note: Be careful while applying the change base formula. Sometimes instead of using ${{\log }_{a}}b=\dfrac{{{\log }_{n}}b}{{{\log }_{n}}a}$ , students take ${{\log }_{a}}b=\dfrac{{{\log }_{n}}a}{{{\log }_{n}}b}$ and whole answer gets wrong. If we use this wrong formula, then there are chances of getting incorrect answers and students will get confused while solving the equation. So, please remember the formula properly and then try to solve it.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

10 examples of friction in our daily life

