
If $y={{\left( {{\tan }^{-1}}x \right)}^{2}}$ , show that ${{\left( {{x}^{2}}+1 \right)}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2x\left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}=2$ .
Answer
513.3k+ views
Hint: In order to solve this problem, we need to know the standard formulas of differentiation. The formulas are $\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}$ and $\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}}$ and $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$ . We need to find the first order and the second-order differentiation of the given function and substitute in the left-hand side expression to prove that right-hand side expression.
Complete step by step answer:
We are given the expression of $y={{\left( {{\tan }^{-1}}x \right)}^{2}}$ , and we need to prove that ${{\left( {{x}^{2}}+1 \right)}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2x\left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}=2$ .
Let's differentiate the equation $y={{\left( {{\tan }^{-1}}x \right)}^{2}}$ with respect to x
We need to use the standard formulas such as $\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}$ and $\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}}$ .
Performing the operation we get,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{d}{dx}{{\left( {{\tan }^{-1}}x \right)}^{2}} \\
& =2\left( {{\tan }^{-1}}x \right)\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right) \\
& =2\left( {{\tan }^{-1}}x \right)\left( \dfrac{1}{1+{{x}^{2}}} \right)
\end{align}$
As we can see that in the expression that we have to prove we are given the second-order differential equation,
So, we need to differentiate the expression again.
The standard formula required are as follows,
$\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$ .
By performing the differentiation with respect to x we get,
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2\left( {{\tan }^{-1}}x \right)\left( \dfrac{1}{1+{{x}^{2}}} \right) \right) \\
& =2\left( \dfrac{-{{\tan }^{-1}}x\left( 2x \right)+\left( 1+{{x}^{2}} \right)\left( \dfrac{1}{1+{{x}^{2}}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} \right) \\
\end{align}$
Solving this we get,
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2\left( \dfrac{-2x\left( {{\tan }^{-1}}x \right)+1}{{{\left( 1+{{x}^{2}} \right)}^{2}}} \right)$
Now, substituting all the values from the expression we get,
$\begin{align}
& {{\left( {{x}^{2}}+1 \right)}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2x\left( {{x}^{2}}+1 \right)\dfrac{dy}{dx} \\
& {{\left( {{x}^{2}}+1 \right)}^{2}}\left( 2\left( \dfrac{-2x\left( {{\tan }^{-1}}x \right)+1}{{{\left( 1+{{x}^{2}} \right)}^{2}}} \right) \right)+2x\left( {{x}^{2}}+1 \right)\left( 2\left( {{\tan }^{-1}}x \right)\left( \dfrac{1}{1+{{x}^{2}}} \right) \right) \\
\end{align}$
Simplifying the equation we get,
$\begin{align}
& {{\left( {{x}^{2}}+1 \right)}^{2}}\left( 2\left( \dfrac{-2x\left( {{\tan }^{-1}}x \right)+1}{{{\left( 1+{{x}^{2}} \right)}^{2}}} \right) \right)+2x\left( {{x}^{2}}+1 \right)\left( 2\left( {{\tan }^{-1}}x \right)\left( \dfrac{1}{1+{{x}^{2}}} \right) \right) \\
& \left( 2\left( \dfrac{-2x\left( {{\tan }^{-1}}x \right)+1}{1} \right) \right)+2x\left( 2\left( {{\tan }^{-1}}x \right) \right) \\
& -4x{{\tan }^{-1}}x+2+4x{{\tan }^{-1}}x \\
& =2 \\
\end{align}$
Hence left-hand side = right-hand side.
Therefore, we can see that the ${{\left( {{x}^{2}}+1 \right)}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2x\left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}=2$ is proved
Note:
The calculation in this problem is quite complicated. While differentiating we need to use the chain rule. The chain rule is used when we need to find the differentiation of the function inside the function. And it is carried out as we need to differentiate the outermost function followed by the multiplication of the differentiation of the innermost function.
Complete step by step answer:
We are given the expression of $y={{\left( {{\tan }^{-1}}x \right)}^{2}}$ , and we need to prove that ${{\left( {{x}^{2}}+1 \right)}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2x\left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}=2$ .
Let's differentiate the equation $y={{\left( {{\tan }^{-1}}x \right)}^{2}}$ with respect to x
We need to use the standard formulas such as $\dfrac{d{{x}^{n}}}{dx}=n{{x}^{n-1}}$ and $\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}}$ .
Performing the operation we get,
$\begin{align}
& \dfrac{dy}{dx}=\dfrac{d}{dx}{{\left( {{\tan }^{-1}}x \right)}^{2}} \\
& =2\left( {{\tan }^{-1}}x \right)\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right) \\
& =2\left( {{\tan }^{-1}}x \right)\left( \dfrac{1}{1+{{x}^{2}}} \right)
\end{align}$
As we can see that in the expression that we have to prove we are given the second-order differential equation,
So, we need to differentiate the expression again.
The standard formula required are as follows,
$\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{du}{dx}-u\dfrac{dv}{dx}}{{{v}^{2}}}$ .
By performing the differentiation with respect to x we get,
$\begin{align}
& \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( 2\left( {{\tan }^{-1}}x \right)\left( \dfrac{1}{1+{{x}^{2}}} \right) \right) \\
& =2\left( \dfrac{-{{\tan }^{-1}}x\left( 2x \right)+\left( 1+{{x}^{2}} \right)\left( \dfrac{1}{1+{{x}^{2}}} \right)}{{{\left( 1+{{x}^{2}} \right)}^{2}}} \right) \\
\end{align}$
Solving this we get,
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=2\left( \dfrac{-2x\left( {{\tan }^{-1}}x \right)+1}{{{\left( 1+{{x}^{2}} \right)}^{2}}} \right)$
Now, substituting all the values from the expression we get,
$\begin{align}
& {{\left( {{x}^{2}}+1 \right)}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2x\left( {{x}^{2}}+1 \right)\dfrac{dy}{dx} \\
& {{\left( {{x}^{2}}+1 \right)}^{2}}\left( 2\left( \dfrac{-2x\left( {{\tan }^{-1}}x \right)+1}{{{\left( 1+{{x}^{2}} \right)}^{2}}} \right) \right)+2x\left( {{x}^{2}}+1 \right)\left( 2\left( {{\tan }^{-1}}x \right)\left( \dfrac{1}{1+{{x}^{2}}} \right) \right) \\
\end{align}$
Simplifying the equation we get,
$\begin{align}
& {{\left( {{x}^{2}}+1 \right)}^{2}}\left( 2\left( \dfrac{-2x\left( {{\tan }^{-1}}x \right)+1}{{{\left( 1+{{x}^{2}} \right)}^{2}}} \right) \right)+2x\left( {{x}^{2}}+1 \right)\left( 2\left( {{\tan }^{-1}}x \right)\left( \dfrac{1}{1+{{x}^{2}}} \right) \right) \\
& \left( 2\left( \dfrac{-2x\left( {{\tan }^{-1}}x \right)+1}{1} \right) \right)+2x\left( 2\left( {{\tan }^{-1}}x \right) \right) \\
& -4x{{\tan }^{-1}}x+2+4x{{\tan }^{-1}}x \\
& =2 \\
\end{align}$
Hence left-hand side = right-hand side.
Therefore, we can see that the ${{\left( {{x}^{2}}+1 \right)}^{2}}\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2x\left( {{x}^{2}}+1 \right)\dfrac{dy}{dx}=2$ is proved
Note:
The calculation in this problem is quite complicated. While differentiating we need to use the chain rule. The chain rule is used when we need to find the differentiation of the function inside the function. And it is carried out as we need to differentiate the outermost function followed by the multiplication of the differentiation of the innermost function.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the technique used to separate the components class 11 chemistry CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

Give two reasons to justify a Water at room temperature class 11 chemistry CBSE
