
If \[y=\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\], prove that: \[(1-{{x}^{2}})\dfrac{dy}{dx}=x+\dfrac{y}{x}\]
Answer
607.8k+ views
Hint: To prove this we can differentiate the function w.r.t x by using product rule and quotient rule.
\[\dfrac{d}{dx}(u.v)=u.\dfrac{d}{dx}(v)+v.\dfrac{d}{dx}(u)\] [Product Rule]
\[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v.\dfrac{du}{dx}-u.\dfrac{dv}{dx}}{\mathop{v}^{2}}\] [Quotient Rule]
Complete step-by-step answer:
Given \[y=\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\]
Differentiating the function w.r.t. x
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}} \right]\]
Using \[(uv)\]rule and \[\left( \dfrac{u}{v} \right)\]rule,
\[\dfrac{dy}{dx}=\dfrac{\sqrt{1-{{x}^{2}}}.\dfrac{d}{dx}(x{{\sin }^{-1}}x)-(x{{\sin }^{-1}}x)\dfrac{d}{dx}\sqrt{1-{{x}^{2}}}}{\mathop{\left( \sqrt{1-{{x}^{2}}} \right)}^{2}}\]
Now, \[\dfrac{d}{dx}(x{{\sin }^{-1}}x)=x.\dfrac{1}{\sqrt{1-{{x}^{2}}}}+{{\sin }^{-1}}x(1)\]
\[\left\{ \dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}} \right\}\]
Now,
\[\dfrac{d}{dx}\sqrt{1-{{x}^{2}}}=\dfrac{1}{2\sqrt{1-{{x}^{2}}}}\times( -2x)\Rightarrow \dfrac{-x}{\sqrt{1-{{x}^{2}}}}\]
\[\left\{ \dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}} \right\}\]
\[\therefore \dfrac{dy}{dx}=\dfrac{\sqrt{1-{{x}^{2}}}.\left[ \dfrac{x}{\sqrt{1-{{x}^{2}}}}+{{\sin }^{-1}}x \right]-x{{\sin }^{-1}}x\dfrac{-x}{\sqrt{1-{{x}^{2}}}}}{(1-{{x}^{2}})}\]
\[\therefore \dfrac{dy}{dx}=\dfrac{x+{{\sin }^{-1}}x.(\sqrt{1-{{x}^{2}}})-\dfrac{{{x}^{2}}{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}}{(1-{{x}^{2}})}\]
Taking \[(1-{{x}^{2}})\]to the other side,
\[\Rightarrow (1-{{x}^{2}})\dfrac{dy}{dx}=x+{{\sin }^{-1}}x.(\sqrt{1-{{x}^{2}}})-\dfrac{{{x}^{2}}{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\]
\[\Rightarrow (1-{{x}^{2}})\dfrac{dy}{dx}=x+\dfrac{\mathop{\left( \sqrt{1-{{x}^{2}}} \right)}^{2}{{\sin }^{-1}}x+{{x}^{2}}{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\]
\[\Rightarrow (1-\mathop{x}^{2})\dfrac{dy}{dx}=x+\dfrac{(1-\mathop{x}^{2}){{\sin }^{-1}}x+{{x}^{2}}{{\sin }^{-1}}x}{\sqrt{1-\mathop{x}^{2}}}\]
\[\Rightarrow (1-\mathop{x}^{2})\dfrac{dy}{dx}=x+\dfrac{{{\sin }^{-1}}x-{{x}^{2}}{{\sin }^{-1}}x+{{x}^{2}}{{\sin }^{-1}}x}{\sqrt{1-\mathop{x}^{2}}}\]
\[\Rightarrow (1-\mathop{x}^{2})\dfrac{dy}{dx}=x+\dfrac{{{\sin }^{-1}}x}{\sqrt{1-\mathop{x}^{2}}}\]
Given \[y=\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-\mathop{x}^{2}}}\Rightarrow \dfrac{{{\sin }^{-1}}x}{\sqrt{1-\mathop{x}^{2}}}=\dfrac{y}{x}\]
\[\therefore \]Substituting the value of \[\dfrac{{{\sin }^{-1}}x}{\sqrt{1-\mathop{x}^{2}}}\] as \[\dfrac{y}{x}\] in eq. 1
\[(1-\mathop{x}^{2})\dfrac{dy}{dx}=x+\dfrac{y}{x}\]
Hence proved.
Note: In this question we need to be careful about the order of application of formula. First we need to use the quotient rule and then we need to use the multiplication rule.
\[\dfrac{d}{dx}(u.v)=u.\dfrac{d}{dx}(v)+v.\dfrac{d}{dx}(u)\] [Product Rule]
\[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v.\dfrac{du}{dx}-u.\dfrac{dv}{dx}}{\mathop{v}^{2}}\] [Quotient Rule]
Complete step-by-step answer:
Given \[y=\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\]
Differentiating the function w.r.t. x
\[\dfrac{dy}{dx}=\dfrac{d}{dx}\left[ \dfrac{x{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}} \right]\]
Using \[(uv)\]rule and \[\left( \dfrac{u}{v} \right)\]rule,
\[\dfrac{dy}{dx}=\dfrac{\sqrt{1-{{x}^{2}}}.\dfrac{d}{dx}(x{{\sin }^{-1}}x)-(x{{\sin }^{-1}}x)\dfrac{d}{dx}\sqrt{1-{{x}^{2}}}}{\mathop{\left( \sqrt{1-{{x}^{2}}} \right)}^{2}}\]
Now, \[\dfrac{d}{dx}(x{{\sin }^{-1}}x)=x.\dfrac{1}{\sqrt{1-{{x}^{2}}}}+{{\sin }^{-1}}x(1)\]
\[\left\{ \dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}} \right\}\]
Now,
\[\dfrac{d}{dx}\sqrt{1-{{x}^{2}}}=\dfrac{1}{2\sqrt{1-{{x}^{2}}}}\times( -2x)\Rightarrow \dfrac{-x}{\sqrt{1-{{x}^{2}}}}\]
\[\left\{ \dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}} \right\}\]
\[\therefore \dfrac{dy}{dx}=\dfrac{\sqrt{1-{{x}^{2}}}.\left[ \dfrac{x}{\sqrt{1-{{x}^{2}}}}+{{\sin }^{-1}}x \right]-x{{\sin }^{-1}}x\dfrac{-x}{\sqrt{1-{{x}^{2}}}}}{(1-{{x}^{2}})}\]
\[\therefore \dfrac{dy}{dx}=\dfrac{x+{{\sin }^{-1}}x.(\sqrt{1-{{x}^{2}}})-\dfrac{{{x}^{2}}{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}}{(1-{{x}^{2}})}\]
Taking \[(1-{{x}^{2}})\]to the other side,
\[\Rightarrow (1-{{x}^{2}})\dfrac{dy}{dx}=x+{{\sin }^{-1}}x.(\sqrt{1-{{x}^{2}}})-\dfrac{{{x}^{2}}{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\]
\[\Rightarrow (1-{{x}^{2}})\dfrac{dy}{dx}=x+\dfrac{\mathop{\left( \sqrt{1-{{x}^{2}}} \right)}^{2}{{\sin }^{-1}}x+{{x}^{2}}{{\sin }^{-1}}x}{\sqrt{1-{{x}^{2}}}}\]
\[\Rightarrow (1-\mathop{x}^{2})\dfrac{dy}{dx}=x+\dfrac{(1-\mathop{x}^{2}){{\sin }^{-1}}x+{{x}^{2}}{{\sin }^{-1}}x}{\sqrt{1-\mathop{x}^{2}}}\]
\[\Rightarrow (1-\mathop{x}^{2})\dfrac{dy}{dx}=x+\dfrac{{{\sin }^{-1}}x-{{x}^{2}}{{\sin }^{-1}}x+{{x}^{2}}{{\sin }^{-1}}x}{\sqrt{1-\mathop{x}^{2}}}\]
\[\Rightarrow (1-\mathop{x}^{2})\dfrac{dy}{dx}=x+\dfrac{{{\sin }^{-1}}x}{\sqrt{1-\mathop{x}^{2}}}\]
Given \[y=\dfrac{x{{\sin }^{-1}}x}{\sqrt{1-\mathop{x}^{2}}}\Rightarrow \dfrac{{{\sin }^{-1}}x}{\sqrt{1-\mathop{x}^{2}}}=\dfrac{y}{x}\]
\[\therefore \]Substituting the value of \[\dfrac{{{\sin }^{-1}}x}{\sqrt{1-\mathop{x}^{2}}}\] as \[\dfrac{y}{x}\] in eq. 1
\[(1-\mathop{x}^{2})\dfrac{dy}{dx}=x+\dfrac{y}{x}\]
Hence proved.
Note: In this question we need to be careful about the order of application of formula. First we need to use the quotient rule and then we need to use the multiplication rule.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

