Answer
Verified
439.8k+ views
Hint: We have to find the dimensional formula of the given value. For that we first find the dimensional formulas for each value in the equation separately. Then we combine those dimensional formulas to get the dimension of the given equation.
Formula used:
Potential difference,
$V=\dfrac{W}{Q}$
Work done,
$W=F\times Displacement$
Force,
$F=ma$
Complete step by step answer:
We are given the question $y=\dfrac{t}{{{\varepsilon }_{o}}LV}$ .
It is given that, t is time.
We know that dimension of time; t is given as [T].
And ‘L’ is said to be length.
Dimension of length; L is given as [L]
It is given, ‘V’ is potential.
We know that potential difference is the ratio of work done to the charge moved.
$V=\dfrac{W}{Q}$ , Where ‘W’ is the work done and ‘Q’ is the charge.
Work done is the product of force and displacement.
$W=F\times Displacement$
From Newton’s second law, we know that,
$F=m\times a$
Dimensional formula of,
$\begin{align}
& \text{Mass=}\left[ {{M}^{1}}{{L}^{0}}{{T}^{0}} \right] \\
& \text{Displacement=}\left[ {{M}^{0}}{{L}^{1}}{{T}^{0}} \right] \\
& \text{Acceleration=}\left[ {{M}^{0}}{{L}^{1}}{{T}^{-2}} \right] \\
\end{align}$
From this information, we can calculate the dimensional formula of work done.
Work done$=\left[ {{M}^{1}}{{L}^{0}}{{T}^{0}} \right]\times \left[ {{M}^{0}}{{L}^{1}}{{T}^{-2}} \right]\times \left[ {{M}^{0}}{{L}^{1}}{{T}^{0}} \right]$
Work done $=\left[ {{M}^{1}}{{L}^{2}}{{T}^{-2}} \right]$
And, since charge is the product of current and time its dimensional formula can be written as
$\text{Charge=}\left[ {{M}^{0}}{{L}^{0}}{{T}^{1}}{{I}^{1}} \right]$
Therefore, the dimensional formula of potential difference is,
$\begin{align}
& V=\left[ {{M}^{1}}{{L}^{2}}{{T}^{-2}} \right]\times {{\left[ {{M}^{0}}{{L}^{0}}{{T}^{1}}{{I}^{1}} \right]}^{-1}} \\
& V=\left[ {{M}^{1}}{{L}^{2}}{{T}^{-3}}{{I}^{-1}} \right] \\
\end{align}$
Given,${{\varepsilon }_{o}}$ is the permittivity of free space or vacuum.
Permittivity (${{\varepsilon }_{0}}$) $=\left[ Ch\arg {{e}^{2}} \right]\times {{\left[ Force \right]}^{-1}}\times \left[ Dis\tan c{{e}^{2}} \right]$
Dimensional formula of charge$=\left[ {{M}^{0}}{{L}^{0}}{{T}^{1}}{{I}^{1}} \right]$
Dimensional formula of distance=$\left[ L \right]$
Dimensional formula of force$=\left[ {{M}^{1}}{{L}^{1}}{{T}^{-2}} \right]$
Therefore, dimensional formula of permittivity of free space,
$\begin{align}
& {{\varepsilon }_{o}}={{\left[ {{M}^{0}}{{L}^{0}}{{T}^{1}}{{I}^{1}} \right]}^{2}}\times {{\left[ {{M}^{1}}{{L}^{1}}{{T}^{-2}} \right]}^{-1}}\times {{\left[ {{M}^{0}}{{L}^{1}}{{T}^{0}} \right]}^{-2}} \\
& {{\varepsilon }_{o}}=\left[ {{M}^{-1}}{{L}^{-3}}{{T}^{4}}{{I}^{2}} \right] \\
\end{align}$
Now let us substitute all these dimensional formulas in y.
We get,
$y=\dfrac{\left[ T \right]}{\left[ {{M}^{-1}}{{L}^{-3}}{{T}^{4}}{{I}^{2}} \right]\left[ L \right]\left[ {{M}^{1}}{{L}^{2}}{{T}^{-3}}{{I}^{-1}} \right]}$
$y=\dfrac{\left[ T \right]}{\left[ T \right]\left[ A \right]}$
$y=\dfrac{1}{\left[ A \right]}$
$y={{\left[ A \right]}^{-1}}$
Therefore, the dimensional formula of y is = ${{\left[ A \right]}^{-1}}$
Note:
The power to which the fundamental quantities are raised to express the quantity is called the dimension of that quantity. The expression in which the dimensions of the quantity are represented in terms of the fundamental quantity is the dimensional formula of that quantity. There are a total of seven fundamental dimensions.
Formula used:
Potential difference,
$V=\dfrac{W}{Q}$
Work done,
$W=F\times Displacement$
Force,
$F=ma$
Complete step by step answer:
We are given the question $y=\dfrac{t}{{{\varepsilon }_{o}}LV}$ .
It is given that, t is time.
We know that dimension of time; t is given as [T].
And ‘L’ is said to be length.
Dimension of length; L is given as [L]
It is given, ‘V’ is potential.
We know that potential difference is the ratio of work done to the charge moved.
$V=\dfrac{W}{Q}$ , Where ‘W’ is the work done and ‘Q’ is the charge.
Work done is the product of force and displacement.
$W=F\times Displacement$
From Newton’s second law, we know that,
$F=m\times a$
Dimensional formula of,
$\begin{align}
& \text{Mass=}\left[ {{M}^{1}}{{L}^{0}}{{T}^{0}} \right] \\
& \text{Displacement=}\left[ {{M}^{0}}{{L}^{1}}{{T}^{0}} \right] \\
& \text{Acceleration=}\left[ {{M}^{0}}{{L}^{1}}{{T}^{-2}} \right] \\
\end{align}$
From this information, we can calculate the dimensional formula of work done.
Work done$=\left[ {{M}^{1}}{{L}^{0}}{{T}^{0}} \right]\times \left[ {{M}^{0}}{{L}^{1}}{{T}^{-2}} \right]\times \left[ {{M}^{0}}{{L}^{1}}{{T}^{0}} \right]$
Work done $=\left[ {{M}^{1}}{{L}^{2}}{{T}^{-2}} \right]$
And, since charge is the product of current and time its dimensional formula can be written as
$\text{Charge=}\left[ {{M}^{0}}{{L}^{0}}{{T}^{1}}{{I}^{1}} \right]$
Therefore, the dimensional formula of potential difference is,
$\begin{align}
& V=\left[ {{M}^{1}}{{L}^{2}}{{T}^{-2}} \right]\times {{\left[ {{M}^{0}}{{L}^{0}}{{T}^{1}}{{I}^{1}} \right]}^{-1}} \\
& V=\left[ {{M}^{1}}{{L}^{2}}{{T}^{-3}}{{I}^{-1}} \right] \\
\end{align}$
Given,${{\varepsilon }_{o}}$ is the permittivity of free space or vacuum.
Permittivity (${{\varepsilon }_{0}}$) $=\left[ Ch\arg {{e}^{2}} \right]\times {{\left[ Force \right]}^{-1}}\times \left[ Dis\tan c{{e}^{2}} \right]$
Dimensional formula of charge$=\left[ {{M}^{0}}{{L}^{0}}{{T}^{1}}{{I}^{1}} \right]$
Dimensional formula of distance=$\left[ L \right]$
Dimensional formula of force$=\left[ {{M}^{1}}{{L}^{1}}{{T}^{-2}} \right]$
Therefore, dimensional formula of permittivity of free space,
$\begin{align}
& {{\varepsilon }_{o}}={{\left[ {{M}^{0}}{{L}^{0}}{{T}^{1}}{{I}^{1}} \right]}^{2}}\times {{\left[ {{M}^{1}}{{L}^{1}}{{T}^{-2}} \right]}^{-1}}\times {{\left[ {{M}^{0}}{{L}^{1}}{{T}^{0}} \right]}^{-2}} \\
& {{\varepsilon }_{o}}=\left[ {{M}^{-1}}{{L}^{-3}}{{T}^{4}}{{I}^{2}} \right] \\
\end{align}$
Now let us substitute all these dimensional formulas in y.
We get,
$y=\dfrac{\left[ T \right]}{\left[ {{M}^{-1}}{{L}^{-3}}{{T}^{4}}{{I}^{2}} \right]\left[ L \right]\left[ {{M}^{1}}{{L}^{2}}{{T}^{-3}}{{I}^{-1}} \right]}$
$y=\dfrac{\left[ T \right]}{\left[ T \right]\left[ A \right]}$
$y=\dfrac{1}{\left[ A \right]}$
$y={{\left[ A \right]}^{-1}}$
Therefore, the dimensional formula of y is = ${{\left[ A \right]}^{-1}}$
Note:
The power to which the fundamental quantities are raised to express the quantity is called the dimension of that quantity. The expression in which the dimensions of the quantity are represented in terms of the fundamental quantity is the dimensional formula of that quantity. There are a total of seven fundamental dimensions.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE