
If \[y={{\cot }^{-1}}\left[ \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right]\] where \[x\in \left( 0,\dfrac{\pi }{4} \right)\] then find the value of \[\dfrac{dy}{dx}\] .
(a) \[\dfrac{1}{2}\]
(b) \[\dfrac{2}{3}\]
(c) 3
(d) 1
Answer
574.8k+ views
Hint: We will be using the concepts of inverse trigonometric function to simplify the expression we will simplify the value of \[\dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\] first so that it become easy to solve the question further , for simplifying the expression we will be using trigonometric identities like
\[\begin{align}
& \sin 2x=2\sin x\cos x \\
& \cos 2x=2{{\cos }^{2}}x-1 \\
& {{\cot }^{-1}}\left( \cot x \right)=x \\
\end{align}\]
and then we use the concepts of differential calculus to find the final answer.
Complete step-by-step answer:
Now, \[y={{\cot }^{-1}}\left[ \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right]\]
Now, we will first simplify \[\dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\]
We will now multiply both numerator and denominator by \[\sqrt{1+\sin x}-\sqrt{1-\sin x}\]
\[\dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}=\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)\times \left( \dfrac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)\]
Now we know that,
\[\begin{align}
& \left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align}\]
So, we have
\[\dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}=\dfrac{1+\sin x-1+\sin x}{1+\sin x+1-\sin x-2\sqrt{1-{{\sin }^{2}}x}}\]
\[=\dfrac{2\sin x}{2-2\sqrt{{{\cos }^{2}}x}}\]
\[=\dfrac{2\sin x}{2\left( 1-\cos x \right)}\]
\[=\dfrac{\sin x}{1-\cos x}\]
Now we know the trigonometric identities that
$\begin{align}
& \sin 2x=2\sin x\cos x \\
& \Rightarrow \sin x=2\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)..........(i) \\
& \cos 2x=1-2{{\sin }^{2}}x \\
& \Rightarrow \cos x=1-2{{\sin }^{2}}\left( \dfrac{{{x}^{2}}}{2} \right) \\
& 2{{\sin }^{2}}\left( \dfrac{x}{2} \right)=1-\cos x...........(ii) \\
\end{align}$
Now, we will use equation (i) and (ii) in numerator and denominator
\[\dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}=\dfrac{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}{2{{\sin }^{2}}\dfrac{x}{2}}=\cot \dfrac{x}{2}\]
So, we have
\[\dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}=\cot \dfrac{x}{2}\]
Now substituting this in y we have,
$y={{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right)$
Also we know that
${{\cot }^{-1}}\left( \cot \theta \right)=\theta $
So,
$y=\dfrac{x}{2}$
Now, we have to find \[\dfrac{dy}{dx}\] . So,
$\dfrac{dy}{dx}=\dfrac{dy}{dx}\left( \dfrac{x}{2} \right)=\dfrac{1}{2}$
So, the correct answer is “Option (a)”.
Note: To solve these types of question one must know trigonometric identities like
\[\begin{align}
& \sin 2x=2\sin x\cos x \\
& \cos 2x=2{{\cos }^{2}}x-1 \\
& {{\cot }^{-1}}\left( \cot x \right)=x \\
\end{align}\]
Also it has to noted the we have rationalized \[\dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\] because on doing this the numerator and denominator are both simplified and we get rid of the square root this makes solving the problem easy.
\[\begin{align}
& \sin 2x=2\sin x\cos x \\
& \cos 2x=2{{\cos }^{2}}x-1 \\
& {{\cot }^{-1}}\left( \cot x \right)=x \\
\end{align}\]
and then we use the concepts of differential calculus to find the final answer.
Complete step-by-step answer:
Now, \[y={{\cot }^{-1}}\left[ \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right]\]
Now, we will first simplify \[\dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\]
We will now multiply both numerator and denominator by \[\sqrt{1+\sin x}-\sqrt{1-\sin x}\]
\[\dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}=\left( \dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)\times \left( \dfrac{\sqrt{1+\sin x}-\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)\]
Now we know that,
\[\begin{align}
& \left( a+b \right)\left( a-b \right)={{a}^{2}}-{{b}^{2}} \\
& {{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab \\
\end{align}\]
So, we have
\[\dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}=\dfrac{1+\sin x-1+\sin x}{1+\sin x+1-\sin x-2\sqrt{1-{{\sin }^{2}}x}}\]
\[=\dfrac{2\sin x}{2-2\sqrt{{{\cos }^{2}}x}}\]
\[=\dfrac{2\sin x}{2\left( 1-\cos x \right)}\]
\[=\dfrac{\sin x}{1-\cos x}\]
Now we know the trigonometric identities that
$\begin{align}
& \sin 2x=2\sin x\cos x \\
& \Rightarrow \sin x=2\sin \left( \dfrac{x}{2} \right)\cos \left( \dfrac{x}{2} \right)..........(i) \\
& \cos 2x=1-2{{\sin }^{2}}x \\
& \Rightarrow \cos x=1-2{{\sin }^{2}}\left( \dfrac{{{x}^{2}}}{2} \right) \\
& 2{{\sin }^{2}}\left( \dfrac{x}{2} \right)=1-\cos x...........(ii) \\
\end{align}$
Now, we will use equation (i) and (ii) in numerator and denominator
\[\dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}=\dfrac{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}}{2{{\sin }^{2}}\dfrac{x}{2}}=\cot \dfrac{x}{2}\]
So, we have
\[\dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}=\cot \dfrac{x}{2}\]
Now substituting this in y we have,
$y={{\cot }^{-1}}\left( \cot \dfrac{x}{2} \right)$
Also we know that
${{\cot }^{-1}}\left( \cot \theta \right)=\theta $
So,
$y=\dfrac{x}{2}$
Now, we have to find \[\dfrac{dy}{dx}\] . So,
$\dfrac{dy}{dx}=\dfrac{dy}{dx}\left( \dfrac{x}{2} \right)=\dfrac{1}{2}$
So, the correct answer is “Option (a)”.
Note: To solve these types of question one must know trigonometric identities like
\[\begin{align}
& \sin 2x=2\sin x\cos x \\
& \cos 2x=2{{\cos }^{2}}x-1 \\
& {{\cot }^{-1}}\left( \cot x \right)=x \\
\end{align}\]
Also it has to noted the we have rationalized \[\dfrac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}}\] because on doing this the numerator and denominator are both simplified and we get rid of the square root this makes solving the problem easy.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

