
If ${{y}^{2}}=P\left( x \right)$ is a polynomial of degree 3, then $2\left( \dfrac{d}{dx} \right)\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)$is equal to:
(a) ${P}'''\left( x \right)+{P}'\left( x \right)$
(b) ${P}''\left( x \right)\centerdot {P}'''\left( x \right)$
(c) $P\left( x \right)\centerdot {P}'''\left( x \right)$
(d) A constant
Answer
585k+ views
Hint:First, we before proceeding for this, we must find the first derivative of the given polynomial which is ${{y}^{2}}=P\left( x \right)$with respect to x. Then, again by using the product rule $\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$ to get the second derivative of the above function, we get the value of second derivate. Then, by substituting the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$in the given question and then differentiating, we get the desired value.
Complete step by step answer:
In this question, we are supposed to find the value of expression $2\left( \dfrac{d}{dx} \right)\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)$when ${{y}^{2}}=P\left( x \right)$ is a polynomial of degree 3.
So, before proceeding for this, we must find the first derivative of the given polynomial which is ${{y}^{2}}=P\left( x \right)$with respect to x as:
$2y\dfrac{dy}{dx}={P}'\left( x \right)$
Then, again by using the product rule $\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$ to get the second derivative of the above function as:
$2y\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2{{\left( \dfrac{dy}{dx} \right)}^{2}}={P}''\left( x \right)$
Now, we need to find the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ from the above expression, we get:
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{P}''\left( x \right)-2{{\left( \dfrac{dy}{dx} \right)}^{2}}}{2y}$
Then, in the question we need to find the value of the equation $\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)$.
So, by substituting the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$found above, we get:
$\begin{align}
& \left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=\dfrac{{{y}^{3}}{P}''\left( x \right)}{2y}-\dfrac{{{y}^{3}}{{\left[ {P}'\left( x \right) \right]}^{2}}}{4{{y}^{3}}} \\
& \Rightarrow \left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=\dfrac{{{y}^{2}}{P}''\left( x \right)}{2}-\dfrac{{{\left[ {P}'\left( x \right) \right]}^{2}}}{4} \\
\end{align}$
Now, in the question we need to differentiate the $\left( \dfrac{d}{dx} \right)\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)$above obtained value as:
$\dfrac{d}{dx}\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=\dfrac{d}{dx}\left( \dfrac{{{y}^{2}}{P}''\left( x \right)}{2}-\dfrac{{{\left[ {P}'\left( x \right) \right]}^{2}}}{4} \right)$
Then, again by applying the product rule and replacing ${{y}^{2}}=P\left( x \right)$, we get:
$\begin{align}
& \dfrac{d}{dx}\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=\dfrac{d}{dx}\left( \dfrac{P\left( x \right)\centerdot {P}''\left( x \right)}{2}-\dfrac{{{\left[ {P}'\left( x \right) \right]}^{2}}}{4} \right) \\
& \Rightarrow \dfrac{d}{dx}\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=\dfrac{{P}'\left( x \right)\centerdot {P}''\left( x \right)+P\left( x \right)\centerdot {P}'''\left( x \right)}{2}-\dfrac{2{P}'\left( x \right)\centerdot {P}''\left( x \right)}{4} \\
\end{align}$
Now, we need to find the value of $2\left( \dfrac{d}{dx} \right)\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)$, so multiplying by 2 in above expression, we get:
$\begin{align}
& 2\dfrac{d}{dx}\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=\dfrac{2{P}'\left( x \right)\centerdot {P}''\left( x \right)+P\left( x \right)\centerdot {P}'''\left( x \right)}{2}-\dfrac{4{P}'\left( x \right)\centerdot {P}''\left( x \right)}{4} \\
& \Rightarrow 2\dfrac{d}{dx}\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)={P}'\left( x \right)\centerdot {P}''\left( x \right)+P\left( x \right)\centerdot {P}'''\left( x \right)-{P}'\left( x \right)\centerdot {P}''\left( x \right) \\
& \Rightarrow 2\dfrac{d}{dx}\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=P\left( x \right)\centerdot {P}'''\left( x \right) \\
\end{align}$
So, we get the value of$2\left( \dfrac{d}{dx} \right)\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)$ as $P\left( x \right)\centerdot {P}'''\left( x \right)$.
Hence, the option (c) is correct.
Note: Now, to solve these type of the questions we need to know some of the basics of differentiation beforehand so that question can be solved easily. So, the basics required are as:
$\begin{align}
& \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \\
& \dfrac{d}{dx}f\left( x \right)={f}'\left( x \right) \\
\end{align}$
Complete step by step answer:
In this question, we are supposed to find the value of expression $2\left( \dfrac{d}{dx} \right)\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)$when ${{y}^{2}}=P\left( x \right)$ is a polynomial of degree 3.
So, before proceeding for this, we must find the first derivative of the given polynomial which is ${{y}^{2}}=P\left( x \right)$with respect to x as:
$2y\dfrac{dy}{dx}={P}'\left( x \right)$
Then, again by using the product rule $\dfrac{d}{dx}\left( uv \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}$ to get the second derivative of the above function as:
$2y\dfrac{{{d}^{2}}y}{d{{x}^{2}}}+2{{\left( \dfrac{dy}{dx} \right)}^{2}}={P}''\left( x \right)$
Now, we need to find the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$ from the above expression, we get:
$\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{{P}''\left( x \right)-2{{\left( \dfrac{dy}{dx} \right)}^{2}}}{2y}$
Then, in the question we need to find the value of the equation $\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)$.
So, by substituting the value of $\dfrac{{{d}^{2}}y}{d{{x}^{2}}}$found above, we get:
$\begin{align}
& \left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=\dfrac{{{y}^{3}}{P}''\left( x \right)}{2y}-\dfrac{{{y}^{3}}{{\left[ {P}'\left( x \right) \right]}^{2}}}{4{{y}^{3}}} \\
& \Rightarrow \left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=\dfrac{{{y}^{2}}{P}''\left( x \right)}{2}-\dfrac{{{\left[ {P}'\left( x \right) \right]}^{2}}}{4} \\
\end{align}$
Now, in the question we need to differentiate the $\left( \dfrac{d}{dx} \right)\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)$above obtained value as:
$\dfrac{d}{dx}\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=\dfrac{d}{dx}\left( \dfrac{{{y}^{2}}{P}''\left( x \right)}{2}-\dfrac{{{\left[ {P}'\left( x \right) \right]}^{2}}}{4} \right)$
Then, again by applying the product rule and replacing ${{y}^{2}}=P\left( x \right)$, we get:
$\begin{align}
& \dfrac{d}{dx}\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=\dfrac{d}{dx}\left( \dfrac{P\left( x \right)\centerdot {P}''\left( x \right)}{2}-\dfrac{{{\left[ {P}'\left( x \right) \right]}^{2}}}{4} \right) \\
& \Rightarrow \dfrac{d}{dx}\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=\dfrac{{P}'\left( x \right)\centerdot {P}''\left( x \right)+P\left( x \right)\centerdot {P}'''\left( x \right)}{2}-\dfrac{2{P}'\left( x \right)\centerdot {P}''\left( x \right)}{4} \\
\end{align}$
Now, we need to find the value of $2\left( \dfrac{d}{dx} \right)\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)$, so multiplying by 2 in above expression, we get:
$\begin{align}
& 2\dfrac{d}{dx}\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=\dfrac{2{P}'\left( x \right)\centerdot {P}''\left( x \right)+P\left( x \right)\centerdot {P}'''\left( x \right)}{2}-\dfrac{4{P}'\left( x \right)\centerdot {P}''\left( x \right)}{4} \\
& \Rightarrow 2\dfrac{d}{dx}\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)={P}'\left( x \right)\centerdot {P}''\left( x \right)+P\left( x \right)\centerdot {P}'''\left( x \right)-{P}'\left( x \right)\centerdot {P}''\left( x \right) \\
& \Rightarrow 2\dfrac{d}{dx}\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=P\left( x \right)\centerdot {P}'''\left( x \right) \\
\end{align}$
So, we get the value of$2\left( \dfrac{d}{dx} \right)\left( {{y}^{3}}\centerdot \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)$ as $P\left( x \right)\centerdot {P}'''\left( x \right)$.
Hence, the option (c) is correct.
Note: Now, to solve these type of the questions we need to know some of the basics of differentiation beforehand so that question can be solved easily. So, the basics required are as:
$\begin{align}
& \dfrac{d}{dx}{{x}^{n}}=n{{x}^{n-1}} \\
& \dfrac{d}{dx}f\left( x \right)={f}'\left( x \right) \\
\end{align}$
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

