
If $y = {\tan ^{ - 1}}\left( {{{\log }_{(e{x^6})}}\left( {\dfrac{{{e^2}}}{{{x^3}}}} \right)} \right) + {\tan ^{ - 1}}\left( {{{\log }_{(e{x^{12}})}}\left( {\dfrac{{{e^4}}}{{{x^3}}}} \right)} \right)$, then $\dfrac{{dy}}{{dx}}$ is equal to
A. $3{\tan ^{ - 1}}\left( {\log x} \right)$
B. $0$
C. $\dfrac{1}{2}$
D. None of these
Answer
584.7k+ views
Hint: We know the base change properties of ${\log _a}b$ is given, we can write it as $\dfrac{{{{\log }_e}b}}{{{{\log }_e}a}}$
So here $\left( {{{\log }_{(e{x^6})}}\left( {\dfrac{{{e^2}}}{{{x^3}}}} \right)} \right)$ can be written as
$\dfrac{{{{\log }_e}\left( {\dfrac{{{e^2}}}{{{x^3}}}} \right)}}{{{{\log }_e}(e{x^6})}} = \dfrac{{{{\log }_e}{e^2} - {{\log }_e}{x^3}}}{{{{\log }_e}e + {{\log }_e}{x^6}}}$
And then solve the function.
Complete step-by-step answer:
Before solving this, we should know some log formulae:
$\log (ab) = \log a + \log b$
$\log (\dfrac{a}{b}) = \log a - \log b$
${\log _a}b$$ = $$\dfrac{{{{\log }_e}b}}{{{{\log }_e}a}}$ (base change properties)
Now we are given that
$y = {\tan ^{ - 1}}\left( {{{\log }_{(e{x^6})}}\left( {\dfrac{{{e^2}}}{{{x^3}}}} \right)} \right) + {\tan ^{ - 1}}\left( {{{\log }_{(e{x^{12}})}}\left( {\dfrac{{{e^4}}}{{{x^3}}}} \right)} \right)$
Now applying the base change formula, we get that
$y = {\tan ^{ - 1}}\dfrac{{{{\log }_e}\left( {\dfrac{{{e^2}}}{{{x^3}}}} \right)}}{{{{\log }_e}(e{x^6})}}$$ + {\tan ^{ - 1}}\dfrac{{{{\log }_e}\left( {\dfrac{{{e^4}}}{{{x^3}}}} \right)}}{{{{\log }_e}(e{x^{12}})}}$
As we know that
$\log (\dfrac{a}{b}) = \log a - \log b$
$\log (ab) = \log a + \log b$
${\log _a}{b^x} = x{\log _a}b$
We now know all the properties of log and by using them, we get that:
$y = {\tan ^{ - 1}}\left( {\dfrac{{{{\log }_e}{e^2} - {{\log }_e}{x^3}}}{{{{\log }_e}e + {{\log }_e}{x^6}}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{{{\log }_e}{e^4} - {{\log }_e}{x^3}}}{{{{\log }_e}e + {{\log }_e}{x^{12}}}}} \right)$
$y = {\tan ^{ - 1}}\left( {\dfrac{{2 - 3{{\log }_e}x}}{{1 + 6{{\log }_e}x}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{4 - 3{{\log }_e}x}}{{1 + 12{{\log }_e}x}}} \right)$
Also we know that
${\tan ^{ - 1}}a + {\tan ^{ - 1}}b = {\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{1 - ab}}} \right)$
So $y = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{2 - 3{{\log }_e}x}}{{1 + 6{{\log }_e}x}} + \dfrac{{4 - 3{{\log }_e}x}}{{1 + 12{{\log }_e}x}}}}{{1 - \dfrac{{2 - 3{{\log }_e}x}}{{1 + 6{{\log }_e}x}}.\dfrac{{4 - 3{{\log }_e}x}}{{1 + 12{{\log }_e}x}}}}} \right)$
$y = {\tan ^{ - 1}}\left( {\dfrac{{(2 - 3{{\log }_e}x)(1 + 12{{\log }_e}x) + (4 - 3{{\log }_e}x)(1 + 6{{\log }_e}x)}}{{(1 + 6{{\log }_e}x)((1 + 12{{\log }_e}x) - (3 - 2{{\log }_e}x)(4 - 3{{\log }_e}x)}}} \right)$
Upon simplification, we get that
$y = {\tan ^{ - 1}}\left( {\dfrac{{2 + 24{{\log }_e}x - 3{{\log }_e}x - 36{{({{\log }_e}x)}^2} + 4 + 24{{\log }_e}x - 3{{\log }_e}x - 18{{({{\log }_e}x)}^2}}}{{1 + 12{{\log }_e}x + 6{{\log }_e}x + 72{{({{\log }_e}x)}^2} - 8 + 6{{\log }_e}x + 12{{\log }_e}x - 9{{({{\log }_e}x)}^2}}}} \right)$
$y = {\tan ^{ - 1}}\left( {\dfrac{{6 + 42{{\log }_e}x - 54{{({{\log }_e}x)}^2}}}{{ - 7 + 36{{\log }_e}x + 63{{({{\log }_e}x)}^2}}}} \right)$
So $\dfrac{{dy}}{{dx}}$ of${\tan ^{ - 1}}(x)$ would be $\dfrac{1}{{1 + {x^2}}}$
$\dfrac{{dy}}{{dx}}$$ = \dfrac{1}{{1 + {{\left( {\dfrac{{6 + 42{{\log }_e}x - 54{{({{\log }_e}x)}^2}}}{{ - 7 + 36{{\log }_e}x + 63{{({{\log }_e}x)}^2}}}} \right)}^2}}}$
Now to solve this complete let us take ${\log _e}x = t$
So $\dfrac{{dy}}{{dx}}{|_t}$$ = \dfrac{1}{{1 + {{\left( {\dfrac{{6 + 42t - 54{t^2}}}{{63{t^2} + 36t - 7}}} \right)}^2}}}$
$ = \dfrac{{{{(63{t^2} + 36t - 7)}^2}}}{{{{(63{t^2} + 36t - 7)}^2} + {{(6 + 42t - 54{t^2})}^2}}}$
As we know that ${(a + b + c)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca$
So we get that $\dfrac{{dy}}{{dx}}{|_t}$ as
$ = \dfrac{{3969{t^4} + 1269{t^2} + 49 + 4536{t^3} - 504t - 882{t^2}}}{{(3969{t^4} + 1269{t^2} + 49 + 4536{t^3} - 504t - 882{t^2}) + (2916{t^4} + 1764{t^2} + 36 - 4536{t^3} + 504t - 648{t^2})}}$$ = \dfrac{{3969{t^4} + 414{t^2} + 49 + 4536{t^3} - 504t}}{{6885{t^4} + 1530{t^2} + 85}}$
Where $t = {\log _e}x$
So no option is matching so none of these above options is the correct one
So it cannot be zero and it neither can be $3{\tan ^{ - 1}}(\log x)$ as its form is very complex.
Note: The derivative of the constant term is zero. Like if we are given $y = $$5$ then $\dfrac{{dy}}{{dx}}$ is always zero.
We must also know that $\dfrac{{dy}}{{dx}}$ of ${\tan ^{ - 1}}(x)$ would be $\dfrac{1}{{1 + {x^2}}}$
So here $\left( {{{\log }_{(e{x^6})}}\left( {\dfrac{{{e^2}}}{{{x^3}}}} \right)} \right)$ can be written as
$\dfrac{{{{\log }_e}\left( {\dfrac{{{e^2}}}{{{x^3}}}} \right)}}{{{{\log }_e}(e{x^6})}} = \dfrac{{{{\log }_e}{e^2} - {{\log }_e}{x^3}}}{{{{\log }_e}e + {{\log }_e}{x^6}}}$
And then solve the function.
Complete step-by-step answer:
Before solving this, we should know some log formulae:
$\log (ab) = \log a + \log b$
$\log (\dfrac{a}{b}) = \log a - \log b$
${\log _a}b$$ = $$\dfrac{{{{\log }_e}b}}{{{{\log }_e}a}}$ (base change properties)
Now we are given that
$y = {\tan ^{ - 1}}\left( {{{\log }_{(e{x^6})}}\left( {\dfrac{{{e^2}}}{{{x^3}}}} \right)} \right) + {\tan ^{ - 1}}\left( {{{\log }_{(e{x^{12}})}}\left( {\dfrac{{{e^4}}}{{{x^3}}}} \right)} \right)$
Now applying the base change formula, we get that
$y = {\tan ^{ - 1}}\dfrac{{{{\log }_e}\left( {\dfrac{{{e^2}}}{{{x^3}}}} \right)}}{{{{\log }_e}(e{x^6})}}$$ + {\tan ^{ - 1}}\dfrac{{{{\log }_e}\left( {\dfrac{{{e^4}}}{{{x^3}}}} \right)}}{{{{\log }_e}(e{x^{12}})}}$
As we know that
$\log (\dfrac{a}{b}) = \log a - \log b$
$\log (ab) = \log a + \log b$
${\log _a}{b^x} = x{\log _a}b$
We now know all the properties of log and by using them, we get that:
$y = {\tan ^{ - 1}}\left( {\dfrac{{{{\log }_e}{e^2} - {{\log }_e}{x^3}}}{{{{\log }_e}e + {{\log }_e}{x^6}}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{{{\log }_e}{e^4} - {{\log }_e}{x^3}}}{{{{\log }_e}e + {{\log }_e}{x^{12}}}}} \right)$
$y = {\tan ^{ - 1}}\left( {\dfrac{{2 - 3{{\log }_e}x}}{{1 + 6{{\log }_e}x}}} \right) + {\tan ^{ - 1}}\left( {\dfrac{{4 - 3{{\log }_e}x}}{{1 + 12{{\log }_e}x}}} \right)$
Also we know that
${\tan ^{ - 1}}a + {\tan ^{ - 1}}b = {\tan ^{ - 1}}\left( {\dfrac{{a + b}}{{1 - ab}}} \right)$
So $y = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{2 - 3{{\log }_e}x}}{{1 + 6{{\log }_e}x}} + \dfrac{{4 - 3{{\log }_e}x}}{{1 + 12{{\log }_e}x}}}}{{1 - \dfrac{{2 - 3{{\log }_e}x}}{{1 + 6{{\log }_e}x}}.\dfrac{{4 - 3{{\log }_e}x}}{{1 + 12{{\log }_e}x}}}}} \right)$
$y = {\tan ^{ - 1}}\left( {\dfrac{{(2 - 3{{\log }_e}x)(1 + 12{{\log }_e}x) + (4 - 3{{\log }_e}x)(1 + 6{{\log }_e}x)}}{{(1 + 6{{\log }_e}x)((1 + 12{{\log }_e}x) - (3 - 2{{\log }_e}x)(4 - 3{{\log }_e}x)}}} \right)$
Upon simplification, we get that
$y = {\tan ^{ - 1}}\left( {\dfrac{{2 + 24{{\log }_e}x - 3{{\log }_e}x - 36{{({{\log }_e}x)}^2} + 4 + 24{{\log }_e}x - 3{{\log }_e}x - 18{{({{\log }_e}x)}^2}}}{{1 + 12{{\log }_e}x + 6{{\log }_e}x + 72{{({{\log }_e}x)}^2} - 8 + 6{{\log }_e}x + 12{{\log }_e}x - 9{{({{\log }_e}x)}^2}}}} \right)$
$y = {\tan ^{ - 1}}\left( {\dfrac{{6 + 42{{\log }_e}x - 54{{({{\log }_e}x)}^2}}}{{ - 7 + 36{{\log }_e}x + 63{{({{\log }_e}x)}^2}}}} \right)$
So $\dfrac{{dy}}{{dx}}$ of${\tan ^{ - 1}}(x)$ would be $\dfrac{1}{{1 + {x^2}}}$
$\dfrac{{dy}}{{dx}}$$ = \dfrac{1}{{1 + {{\left( {\dfrac{{6 + 42{{\log }_e}x - 54{{({{\log }_e}x)}^2}}}{{ - 7 + 36{{\log }_e}x + 63{{({{\log }_e}x)}^2}}}} \right)}^2}}}$
Now to solve this complete let us take ${\log _e}x = t$
So $\dfrac{{dy}}{{dx}}{|_t}$$ = \dfrac{1}{{1 + {{\left( {\dfrac{{6 + 42t - 54{t^2}}}{{63{t^2} + 36t - 7}}} \right)}^2}}}$
$ = \dfrac{{{{(63{t^2} + 36t - 7)}^2}}}{{{{(63{t^2} + 36t - 7)}^2} + {{(6 + 42t - 54{t^2})}^2}}}$
As we know that ${(a + b + c)^2} = {a^2} + {b^2} + {c^2} + 2ab + 2bc + 2ca$
So we get that $\dfrac{{dy}}{{dx}}{|_t}$ as
$ = \dfrac{{3969{t^4} + 1269{t^2} + 49 + 4536{t^3} - 504t - 882{t^2}}}{{(3969{t^4} + 1269{t^2} + 49 + 4536{t^3} - 504t - 882{t^2}) + (2916{t^4} + 1764{t^2} + 36 - 4536{t^3} + 504t - 648{t^2})}}$$ = \dfrac{{3969{t^4} + 414{t^2} + 49 + 4536{t^3} - 504t}}{{6885{t^4} + 1530{t^2} + 85}}$
Where $t = {\log _e}x$
So no option is matching so none of these above options is the correct one
So it cannot be zero and it neither can be $3{\tan ^{ - 1}}(\log x)$ as its form is very complex.
Note: The derivative of the constant term is zero. Like if we are given $y = $$5$ then $\dfrac{{dy}}{{dx}}$ is always zero.
We must also know that $\dfrac{{dy}}{{dx}}$ of ${\tan ^{ - 1}}(x)$ would be $\dfrac{1}{{1 + {x^2}}}$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

