
If $y = {\sin ^{ - 1}}(\cos x) + {\cos ^{ - 1}}(\sin x)$, prove that $\dfrac{{dy}}{{dx}} = - 2$.
Answer
580.8k+ views
Hint: In this question we are given an equation and we have to prove that the differentiation of the given equation is -2. We will start by differentiating the given equation and move forward by simplifying it using some simple trigonometric identities. Then, we can cancel the like terms and it will give us the desired result.
Formula used: 1) ${\sin ^2}x + {\cos ^2}x = 1$
2) $\dfrac{{d({{\cos }^{ - 1}}x)}}{{dx}} = \dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }}$
3) $\dfrac{{d({{\sin }^{ - 1}}x)}}{{dx}} = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
4) ${\cos ^{ - 1}}x + {\sin ^{ - 1}}x = \dfrac{\pi }{2}$
Complete step-by-step answer:
We are given that $y = {\sin ^{ - 1}}(\cos x) + {\cos ^{ - 1}}(\sin x)$. We will start by differentiating the given equation.
$y = {\sin ^{ - 1}}(\cos x) + {\cos ^{ - 1}}(\sin x)$
Differentiate with respect to x,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d[{{\sin }^{ - 1}}(\cos x)]}}{{dx}} + \dfrac{{d[{{\cos }^{ - 1}}(\sin x)]}}{{dx}}$
Using formula (2) and (3), and chain rule-
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \sin x}}{{\sqrt {1 - {{\cos }^2}x} }} + \left( {\dfrac{{ - \cos x}}{{\sqrt {1 - {{\sin }^2}x} }}} \right)$
We know that ${\sin ^2}x + {\cos ^2}x = 1$
Hence, $1 - {\cos ^2}x = {\sin ^2}x$ and $1 - {\sin ^2}x = {\cos ^2}x$.
Using these trigonometric identities,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \sin x}}{{\sqrt {{{\sin }^2}x} }} - \dfrac{{\cos x}}{{\sqrt {{{\cos }^2}x} }}$
Solving further,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \sin x}}{{\sin x}} - \dfrac{{\cos x}}{{\cos x}}$
On simplifying,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - 1 - 1$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - 2$
Hence, proved.
Note: The given question can also be solved by the following method. In this method, we use inverse trigonometry identity to solve the question. In the previous method, we started by differentiating the given equation. However, in this method we will start by substituting the identities and will differentiate on a later stage.
We are given $y = {\sin ^{ - 1}}(\cos x) + {\cos ^{ - 1}}(\sin x)$
We know that ${\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}$
Hence, ${\sin ^{ - 1}}x = \dfrac{\pi }{2} - {\cos ^{ - 1}}x$ , and ${\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\sin ^{ - 1}}x$.
Substituting this inverse trigonometric identity in the given equation,
$ \Rightarrow y = \dfrac{\pi }{2} - {\cos ^{ - 1}}(\cos x) + \dfrac{\pi }{2} - {\sin ^{ - 1}}(\sin x)$
Simplifying the above equation,
$ \Rightarrow y = \dfrac{\pi }{2} + \dfrac{\pi }{2} - x - x$ ….. (${\cos ^{ - 1}}(\cos x) = x$)
Adding and subtracting,
$ \Rightarrow y = \pi - 2x$
Differentiate with respect to x,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d(\pi - 2x)}}{{dx}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - 2$
Hence, proved.
Formula used: 1) ${\sin ^2}x + {\cos ^2}x = 1$
2) $\dfrac{{d({{\cos }^{ - 1}}x)}}{{dx}} = \dfrac{{ - 1}}{{\sqrt {1 - {x^2}} }}$
3) $\dfrac{{d({{\sin }^{ - 1}}x)}}{{dx}} = \dfrac{1}{{\sqrt {1 - {x^2}} }}$
4) ${\cos ^{ - 1}}x + {\sin ^{ - 1}}x = \dfrac{\pi }{2}$
Complete step-by-step answer:
We are given that $y = {\sin ^{ - 1}}(\cos x) + {\cos ^{ - 1}}(\sin x)$. We will start by differentiating the given equation.
$y = {\sin ^{ - 1}}(\cos x) + {\cos ^{ - 1}}(\sin x)$
Differentiate with respect to x,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d[{{\sin }^{ - 1}}(\cos x)]}}{{dx}} + \dfrac{{d[{{\cos }^{ - 1}}(\sin x)]}}{{dx}}$
Using formula (2) and (3), and chain rule-
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \sin x}}{{\sqrt {1 - {{\cos }^2}x} }} + \left( {\dfrac{{ - \cos x}}{{\sqrt {1 - {{\sin }^2}x} }}} \right)$
We know that ${\sin ^2}x + {\cos ^2}x = 1$
Hence, $1 - {\cos ^2}x = {\sin ^2}x$ and $1 - {\sin ^2}x = {\cos ^2}x$.
Using these trigonometric identities,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \sin x}}{{\sqrt {{{\sin }^2}x} }} - \dfrac{{\cos x}}{{\sqrt {{{\cos }^2}x} }}$
Solving further,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - \sin x}}{{\sin x}} - \dfrac{{\cos x}}{{\cos x}}$
On simplifying,
$ \Rightarrow \dfrac{{dy}}{{dx}} = - 1 - 1$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - 2$
Hence, proved.
Note: The given question can also be solved by the following method. In this method, we use inverse trigonometry identity to solve the question. In the previous method, we started by differentiating the given equation. However, in this method we will start by substituting the identities and will differentiate on a later stage.
We are given $y = {\sin ^{ - 1}}(\cos x) + {\cos ^{ - 1}}(\sin x)$
We know that ${\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}$
Hence, ${\sin ^{ - 1}}x = \dfrac{\pi }{2} - {\cos ^{ - 1}}x$ , and ${\cos ^{ - 1}}x = \dfrac{\pi }{2} - {\sin ^{ - 1}}x$.
Substituting this inverse trigonometric identity in the given equation,
$ \Rightarrow y = \dfrac{\pi }{2} - {\cos ^{ - 1}}(\cos x) + \dfrac{\pi }{2} - {\sin ^{ - 1}}(\sin x)$
Simplifying the above equation,
$ \Rightarrow y = \dfrac{\pi }{2} + \dfrac{\pi }{2} - x - x$ ….. (${\cos ^{ - 1}}(\cos x) = x$)
Adding and subtracting,
$ \Rightarrow y = \pi - 2x$
Differentiate with respect to x,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d(\pi - 2x)}}{{dx}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = - 2$
Hence, proved.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

