Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

If $y = {\left( {{{\sin }^{ - 1}}x} \right)^2}$ then show that$\left( {1 - {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} = 2$

Answer
VerifiedVerified
582.6k+ views
Hint -Differentiate $y = {\left( {{{\sin }^{ - 1}}x} \right)^2}$ with respect to x and adjust the obtained result. When you again differentiate the adjusted result, you’ll get the answer.

Complete step-by-step answer:
Given,$y = {\left( {{{\sin }^{ - 1}}x} \right)^2}$
On differentiating y with respect to x, we get$\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\left( {{{\sin }^{ - 1}}x} \right)^2} \Rightarrow 2{\sin ^{ - 1}}x \times \dfrac{1}{{\sqrt {1 - {x^2}} }}$ --- (i)
$ \Rightarrow \left( {\sqrt {1 - {x^2}} } \right)\dfrac{{dy}}{{dx}} = 2{\sin ^{ - 1}}x$ --- (ii)
On differentiating eq. (ii) w.r.t. x, we get
$
  \left( {\sqrt {1 - {x^2}} } \right)\dfrac{{{d^2}y}}{{d{x^2}}} - \dfrac{{2x}}{{2\sqrt {1 - {x^2}} }}\dfrac{{dy}}{{dx}} = \dfrac{2}{{\sqrt {1 - {x^2}} }} \\
   \Rightarrow \left( {1 - {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} - x\dfrac{{dy}}{{dx}} = 2 \\
 $
Hence Proved.
Note: You can also solve this by directly differentiating eq. (i) and then solving and adjusting the equation. Then put the value of eq. (i) in the last step and you will obtain the answer.