Answer
Verified
371.1k+ views
Hint: Geometric mean, especially, the square root (such as x) of the product of two numbers (such as a and b) when expressed as the means of a proportion. So, the square of $ y $ is equal to the multiplication of $ x $ and $ z $ respectively.
Complete step by step solution:
If $ y $ is a mean proportion between $ x $ and $ z $ ,
$ \Rightarrow {y^2} = xz $
$ \Rightarrow y = \sqrt {xz} $
We have to prove,
$ {\left[ {\dfrac{{xy + yz + zx}}{{x + y + z}}} \right]^3} = xyz $
So, take numerator of LHS,
$
\Rightarrow {(xy + yz + zx)^3} \\
\Rightarrow {y^3}{(x + y + z)^3} \\
\Rightarrow {y^2}.y{(x + y + z)^3} \\
\Rightarrow zx.y{(x + y + z)^3} \\
\Rightarrow xyz{(x + y + z)^3} \;
$
Now take $ {(x + y + z)^3} $ On LHS,
$ \Rightarrow $ $ {\left[ {\dfrac{{xy + yz + zx}}{{x + y + z}}} \right]^3} = xyz $
Hence proved.
Note:
> The G.M for the given data set is always less than the arithmetic mean for the data set. The ratio of the corresponding observations of the G.M in two series is equal to the ratio of their geometric means.
> If each object in the data set is substituted by the G.M, then the product of the objects remains unchanged.
> The products of the corresponding items of the G.M in two series are equal to the product of their geometric mean.
Complete step by step solution:
If $ y $ is a mean proportion between $ x $ and $ z $ ,
$ \Rightarrow {y^2} = xz $
$ \Rightarrow y = \sqrt {xz} $
We have to prove,
$ {\left[ {\dfrac{{xy + yz + zx}}{{x + y + z}}} \right]^3} = xyz $
So, take numerator of LHS,
$
\Rightarrow {(xy + yz + zx)^3} \\
\Rightarrow {y^3}{(x + y + z)^3} \\
\Rightarrow {y^2}.y{(x + y + z)^3} \\
\Rightarrow zx.y{(x + y + z)^3} \\
\Rightarrow xyz{(x + y + z)^3} \;
$
Now take $ {(x + y + z)^3} $ On LHS,
$ \Rightarrow $ $ {\left[ {\dfrac{{xy + yz + zx}}{{x + y + z}}} \right]^3} = xyz $
Hence proved.
Note:
> The G.M for the given data set is always less than the arithmetic mean for the data set. The ratio of the corresponding observations of the G.M in two series is equal to the ratio of their geometric means.
> If each object in the data set is substituted by the G.M, then the product of the objects remains unchanged.
> The products of the corresponding items of the G.M in two series are equal to the product of their geometric mean.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths