
If $ y $ is a mean proportion between $ x $ and $ z $ , show that $ {\left[ {\dfrac{{xy + yz + zx}}{{x + y + z}}} \right]^3} = xyz $ .
Answer
503.7k+ views
Hint: Geometric mean, especially, the square root (such as x) of the product of two numbers (such as a and b) when expressed as the means of a proportion. So, the square of $ y $ is equal to the multiplication of $ x $ and $ z $ respectively.
Complete step by step solution:
If $ y $ is a mean proportion between $ x $ and $ z $ ,
$ \Rightarrow {y^2} = xz $
$ \Rightarrow y = \sqrt {xz} $
We have to prove,
$ {\left[ {\dfrac{{xy + yz + zx}}{{x + y + z}}} \right]^3} = xyz $
So, take numerator of LHS,
$
\Rightarrow {(xy + yz + zx)^3} \\
\Rightarrow {y^3}{(x + y + z)^3} \\
\Rightarrow {y^2}.y{(x + y + z)^3} \\
\Rightarrow zx.y{(x + y + z)^3} \\
\Rightarrow xyz{(x + y + z)^3} \;
$
Now take $ {(x + y + z)^3} $ On LHS,
$ \Rightarrow $ $ {\left[ {\dfrac{{xy + yz + zx}}{{x + y + z}}} \right]^3} = xyz $
Hence proved.
Note:
> The G.M for the given data set is always less than the arithmetic mean for the data set. The ratio of the corresponding observations of the G.M in two series is equal to the ratio of their geometric means.
> If each object in the data set is substituted by the G.M, then the product of the objects remains unchanged.
> The products of the corresponding items of the G.M in two series are equal to the product of their geometric mean.
Complete step by step solution:
If $ y $ is a mean proportion between $ x $ and $ z $ ,
$ \Rightarrow {y^2} = xz $
$ \Rightarrow y = \sqrt {xz} $
We have to prove,
$ {\left[ {\dfrac{{xy + yz + zx}}{{x + y + z}}} \right]^3} = xyz $
So, take numerator of LHS,
$
\Rightarrow {(xy + yz + zx)^3} \\
\Rightarrow {y^3}{(x + y + z)^3} \\
\Rightarrow {y^2}.y{(x + y + z)^3} \\
\Rightarrow zx.y{(x + y + z)^3} \\
\Rightarrow xyz{(x + y + z)^3} \;
$
Now take $ {(x + y + z)^3} $ On LHS,
$ \Rightarrow $ $ {\left[ {\dfrac{{xy + yz + zx}}{{x + y + z}}} \right]^3} = xyz $
Hence proved.
Note:
> The G.M for the given data set is always less than the arithmetic mean for the data set. The ratio of the corresponding observations of the G.M in two series is equal to the ratio of their geometric means.
> If each object in the data set is substituted by the G.M, then the product of the objects remains unchanged.
> The products of the corresponding items of the G.M in two series are equal to the product of their geometric mean.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which one of the following groups comprises states class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE


