
If \[y = \dfrac{{(\tan (x) + \cot (x))}}{{(\tan (x) - \cot (x))}}\], then \[\dfrac{{dy}}{{dx}} = \]
1) \[2\tan (2x)\sec (2x)\]
2) \[\tan (2x)\sec (2x)\]
3) \[ - \sec (2x)\tan (2x)\]
4) \[ - 2\sec (2x)\tan (2x)\]
Answer
479.1k+ views
Hint: First, simply the expression in terms of a standard trigonometric function and apply the concept of differentiation. While differentiating the function, use the concept of differentiation of essential trigonometric functions. The formulas involved in this question are:
The basic trigonometric formulas like \[\tan (x) = \dfrac{{\sin (x)}}{{\cos (x)}}\] and \[\cot (x) = \dfrac{{\cos (x)}}{{\sin (x)}}\].
The most common trigonometric identity which is \[{\cos ^2}(x) + {\sin ^2}(x) = 1\]
The formula for \[\cos (2x)\] which is \[\cos (2x) = {\cos ^2}(x) - {\sin ^2}(x)\].
Some properties of differentiation as shown below
1) \[\dfrac{{dy}}{{dx}} = \dfrac{{df(x) \times k}}{{dx}} \Rightarrow \dfrac{{dy}}{{dx}} = k\dfrac{{df(x)}}{{dx}}\], where k is a constant
2) \[\dfrac{{dy}}{{dx}} = \dfrac{{df(ax)}}{{dx}} \Rightarrow \dfrac{{dy}}{{dx}} = af'(ax)\], where a is a constant
3) \[\dfrac{{dy}}{{dx}} = \dfrac{{d(\sec (x))}}{{dx}} \Rightarrow \dfrac{{dy}}{{dx}} = \sec (x)\tan (x)\]
Complete answer:
Let’s begin this question by simplifying the expression given
\[ \Rightarrow \dfrac{{(\tan x + \cot x)}}{{(\tan x - \cot x)}}\]
Now, let’s simplify the numerator first,
\[ \Rightarrow (\tan x + \cot x) = \dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}}\]
We know that \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] and \[\cot x = \dfrac{{\cos x}}{{\sin x}}\].
Taking LCM, we get,
\[ \Rightarrow \tan x + \cot x = \dfrac{{{{\sin }^2}(x) + {{\cos }^2}(x)}}{{\cos (x) \times \sin (x)}}\]
Clearly, \[{\cos ^2}(x) + {\sin ^2}(x) = 1\], therefore we get,
\[ \Rightarrow \tan x + \cot x = \dfrac{1}{{\cos x\sin x}} - - - - - \left( 1 \right)\]
Now, simplifying the denominator, we have,
\[ \Rightarrow (\tan x - \cot x) = \dfrac{{\sin x}}{{\cos x}} - \dfrac{{\cos x}}{{\sin x}}\]
Now, using \[\cos (2x) = {\cos ^2}(x) - {\sin ^2}(x)\], we get,
\[ \Rightarrow \tan x - \cot x = \dfrac{{{{\sin }^2}(x) - {{\cos }^2}(x)}}{{\cos (x) \times \sin (x)}}\]
Now, we finally get the numerator, as shown below
\[ \Rightarrow \tan x - \cot x = \dfrac{{ - \cos 2x}}{{\cos x\sin x}} - - - - - \left( 2 \right)\]
Now, we have our primary equation as
\[ \Rightarrow y = \dfrac{{(\tan (x) + \cot (x))}}{{(\tan (x) - \cot (x))}}\]
Substituting the value of the numerator and the denominator using the equations \[(i)\] and \[(ii)\], we get,
\[ \Rightarrow y = \dfrac{{\left( {\dfrac{1}{{\cos x\sin x}}} \right)}}{{\left( {\dfrac{{ - \cos 2x}}{{\cos x\sin x}}} \right)}}\]
Now, cancelling the common terms in numerator and denominator, we get,
\[ \Rightarrow y = \left( {\dfrac{{\cos x\sin x}}{{ - \cos 2x\cos x\sin x}}} \right)\]
\[ \Rightarrow y = \left( {\dfrac{1}{{ - \cos 2x}}} \right)\]
Now, we know that secant and cosine are reciprocals of each other. So, we have,
\[ \Rightarrow y = - \sec 2x\]
Now, let us move to the next part of the question, which involves the differentiation of y
Therefore, we have,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d( - \sec (2x))}}{{dx}}\]
Now, using the property of differentiation
\[\dfrac{{dy}}{{dx}} = \dfrac{{df(x) \times k}}{{dx}} \Rightarrow \dfrac{{dy}}{{dx}} = k\dfrac{{df(x)}}{{dx}}\], we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {\text{}} - \dfrac{{d(\sec (2x))}}{{dx}}\]
And now, applying another property of differentiation \[\dfrac{{dy}}{{dx}} = \dfrac{{df(ax)}}{{dx}} \Rightarrow \dfrac{{dy}}{{dx}} = af'(ax)\] and \[\dfrac{{dy}}{{dx}} = \dfrac{{d(\sec (x))}}{{dx}} \Rightarrow \dfrac{{dy}}{{dx}} = \sec (x)\tan (x)\]in the above equation we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {\text{}} - 2\sec (2x)\tan (2x)\]
Thus, option (4) is the correct answer.
Note:
We should convert the trigonometric functions tangent and cotangent of an angle into sine and cosine of the same angle using the trigonometric formulae: $\tan x = \dfrac{{\sin x}}{{\cos x}}$
and $\cot x = \dfrac{{\cos x}}{{\sin x}}$ as it is relatively easy to work with sine and cosine in place of tangent and cotangent. Chain rule of differentiation $\dfrac{{d\left( {fog\left( x \right)} \right)}}{{dx}} = f'\left( {g\left( x \right)} \right) \times g'\left( x \right)$ helps us to differentiate the composite functions layer by layer.
The basic trigonometric formulas like \[\tan (x) = \dfrac{{\sin (x)}}{{\cos (x)}}\] and \[\cot (x) = \dfrac{{\cos (x)}}{{\sin (x)}}\].
The most common trigonometric identity which is \[{\cos ^2}(x) + {\sin ^2}(x) = 1\]
The formula for \[\cos (2x)\] which is \[\cos (2x) = {\cos ^2}(x) - {\sin ^2}(x)\].
Some properties of differentiation as shown below
1) \[\dfrac{{dy}}{{dx}} = \dfrac{{df(x) \times k}}{{dx}} \Rightarrow \dfrac{{dy}}{{dx}} = k\dfrac{{df(x)}}{{dx}}\], where k is a constant
2) \[\dfrac{{dy}}{{dx}} = \dfrac{{df(ax)}}{{dx}} \Rightarrow \dfrac{{dy}}{{dx}} = af'(ax)\], where a is a constant
3) \[\dfrac{{dy}}{{dx}} = \dfrac{{d(\sec (x))}}{{dx}} \Rightarrow \dfrac{{dy}}{{dx}} = \sec (x)\tan (x)\]
Complete answer:
Let’s begin this question by simplifying the expression given
\[ \Rightarrow \dfrac{{(\tan x + \cot x)}}{{(\tan x - \cot x)}}\]
Now, let’s simplify the numerator first,
\[ \Rightarrow (\tan x + \cot x) = \dfrac{{\sin x}}{{\cos x}} + \dfrac{{\cos x}}{{\sin x}}\]
We know that \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] and \[\cot x = \dfrac{{\cos x}}{{\sin x}}\].
Taking LCM, we get,
\[ \Rightarrow \tan x + \cot x = \dfrac{{{{\sin }^2}(x) + {{\cos }^2}(x)}}{{\cos (x) \times \sin (x)}}\]
Clearly, \[{\cos ^2}(x) + {\sin ^2}(x) = 1\], therefore we get,
\[ \Rightarrow \tan x + \cot x = \dfrac{1}{{\cos x\sin x}} - - - - - \left( 1 \right)\]
Now, simplifying the denominator, we have,
\[ \Rightarrow (\tan x - \cot x) = \dfrac{{\sin x}}{{\cos x}} - \dfrac{{\cos x}}{{\sin x}}\]
Now, using \[\cos (2x) = {\cos ^2}(x) - {\sin ^2}(x)\], we get,
\[ \Rightarrow \tan x - \cot x = \dfrac{{{{\sin }^2}(x) - {{\cos }^2}(x)}}{{\cos (x) \times \sin (x)}}\]
Now, we finally get the numerator, as shown below
\[ \Rightarrow \tan x - \cot x = \dfrac{{ - \cos 2x}}{{\cos x\sin x}} - - - - - \left( 2 \right)\]
Now, we have our primary equation as
\[ \Rightarrow y = \dfrac{{(\tan (x) + \cot (x))}}{{(\tan (x) - \cot (x))}}\]
Substituting the value of the numerator and the denominator using the equations \[(i)\] and \[(ii)\], we get,
\[ \Rightarrow y = \dfrac{{\left( {\dfrac{1}{{\cos x\sin x}}} \right)}}{{\left( {\dfrac{{ - \cos 2x}}{{\cos x\sin x}}} \right)}}\]
Now, cancelling the common terms in numerator and denominator, we get,
\[ \Rightarrow y = \left( {\dfrac{{\cos x\sin x}}{{ - \cos 2x\cos x\sin x}}} \right)\]
\[ \Rightarrow y = \left( {\dfrac{1}{{ - \cos 2x}}} \right)\]
Now, we know that secant and cosine are reciprocals of each other. So, we have,
\[ \Rightarrow y = - \sec 2x\]
Now, let us move to the next part of the question, which involves the differentiation of y
Therefore, we have,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{d( - \sec (2x))}}{{dx}}\]
Now, using the property of differentiation
\[\dfrac{{dy}}{{dx}} = \dfrac{{df(x) \times k}}{{dx}} \Rightarrow \dfrac{{dy}}{{dx}} = k\dfrac{{df(x)}}{{dx}}\], we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {\text{}} - \dfrac{{d(\sec (2x))}}{{dx}}\]
And now, applying another property of differentiation \[\dfrac{{dy}}{{dx}} = \dfrac{{df(ax)}}{{dx}} \Rightarrow \dfrac{{dy}}{{dx}} = af'(ax)\] and \[\dfrac{{dy}}{{dx}} = \dfrac{{d(\sec (x))}}{{dx}} \Rightarrow \dfrac{{dy}}{{dx}} = \sec (x)\tan (x)\]in the above equation we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = {\text{}} - 2\sec (2x)\tan (2x)\]
Thus, option (4) is the correct answer.
Note:
We should convert the trigonometric functions tangent and cotangent of an angle into sine and cosine of the same angle using the trigonometric formulae: $\tan x = \dfrac{{\sin x}}{{\cos x}}$
and $\cot x = \dfrac{{\cos x}}{{\sin x}}$ as it is relatively easy to work with sine and cosine in place of tangent and cotangent. Chain rule of differentiation $\dfrac{{d\left( {fog\left( x \right)} \right)}}{{dx}} = f'\left( {g\left( x \right)} \right) \times g'\left( x \right)$ helps us to differentiate the composite functions layer by layer.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

