
If $y = \dfrac{{{e^x}\log x}}{{{x^2}}}$, then $\dfrac{{dy}}{{dx}}$ is equal to:
A. ${e^x}\dfrac{{\left[ {1 + \left( {x + 2} \right)\log x} \right]}}{{{x^4}}}$
B. ${e^x}\dfrac{{\left[ {1 + \left( {x - 2} \right)\log x} \right]}}{{{x^4}}}$
C. ${e^x}\dfrac{{\left[ {1 - \left( {x - 2} \right)\log x} \right]}}{{{x^3}}}$
D. ${e^x}\dfrac{{\left[ {1 + \left( {x - 2} \right)\log x} \right]}}{{{x^3}}}$
Answer
485.1k+ views
Hint:In the given problem, we are required to differentiate $y = \dfrac{{{e^x}\log x}}{{{x^2}}}$ with respect to x. Since, $y = \dfrac{{{e^x}\log x}}{{{x^2}}}$ is a rational function in variable x, so we will have to apply quotient rule of differentiation in the process of differentiating $y = \dfrac{{{e^x}\log x}}{{{x^2}}}$ . Also derivatives of basic algebraic and trigonometric functions must be remembered thoroughly. We also must know the product rule and chain rule of differentiation to solve the given problem.
Complete step by step answer:
Now, $\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{{e^x}\log x}}{{{x^2}}}} \right)$ .
Now, using the quotient rule of differentiation, we know that $\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}$ .
So, Applying quotient rule to $\dfrac{d}{{dx}}\left( {\dfrac{{{e^x}\log x}}{{{x^2}}}} \right)$, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{x^2}\dfrac{d}{{dx}}\left( {{e^x}\log x} \right) - \left( {{e^x}\log x} \right)\dfrac{d}{{dx}}\left( {{x^2}} \right)}}{{{{\left( {{x^2}} \right)}^2}}}\]
Substituting the derivative of \[{x^2}\] with respect to x as $2x$,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{x^2}\dfrac{d}{{dx}}\left( {{e^x}\log x} \right) - \left( {{e^x}\log x} \right)\left( {2x} \right)}}{{{x^4}}}\]
Now, applying product rule of differentiation $\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) + f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)$, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{x^2}\left[ {{e^x}\dfrac{d}{{dx}}\left( {\log x} \right) + \log x\dfrac{d}{{dx}}\left( {{e^x}} \right)} \right] - \left( {{e^x}\log x} \right)\left( {2x} \right)}}{{{x^4}}}\]
Now, we know that the derivative of \[\log x\] is \[\left( {\dfrac{1}{x}} \right)\]. So, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{x^2}\left[ {{e^x}\left( {\dfrac{1}{x}} \right) + \log x\left( {{e^x}} \right)} \right] - \left( {{e^x}\log x} \right)\left( {2x} \right)}}{{{x^4}}}\]
Taking $x{e^x}$ common from all the terms,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^x}{x^2}\left[ {\left( {\dfrac{1}{x}} \right) + \log x} \right] - {e^x}\left( {\log x} \right)\left( {2x} \right)}}{{{x^4}}}\]
Cancelling common factors in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^x}x\left\{ {\left[ {1 + x\log x} \right] - \left( {\log x} \right)\left( 2 \right)} \right\}}}{{{x^4}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^x}\left\{ {1 + x\log x - 2\log x} \right\}}}{{{x^3}}}\]
Now, simplifying the expression to match the options, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^x}\left[ {1 + \left( {x - 2} \right)\log x} \right]}}{{{x^3}}}\]
\[\therefore \dfrac{{dy}}{{dx}} = \dfrac{{{e^x}\left[ {1 + \left( {x - 2} \right)\log x} \right]}}{{{x^3}}}\]
Hence, option D is the correct answer.
Note: The given problem may also be solved using the first principle of differentiation. The product rule of differentiation involves differentiating a product of two functions and the chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer. The quotient rule involves differentiation of a rational function in some variable. One must know derivatives of some basic functions such as logarithmic and exponential function in order to tackle such problems.
Complete step by step answer:
Now, $\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{{e^x}\log x}}{{{x^2}}}} \right)$ .
Now, using the quotient rule of differentiation, we know that $\dfrac{d}{{dx}}\left( {\dfrac{{f(x)}}{{g(x)}}} \right) = \dfrac{{g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) - f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)}}{{{{\left[ {g\left( x \right)} \right]}^2}}}$ .
So, Applying quotient rule to $\dfrac{d}{{dx}}\left( {\dfrac{{{e^x}\log x}}{{{x^2}}}} \right)$, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{x^2}\dfrac{d}{{dx}}\left( {{e^x}\log x} \right) - \left( {{e^x}\log x} \right)\dfrac{d}{{dx}}\left( {{x^2}} \right)}}{{{{\left( {{x^2}} \right)}^2}}}\]
Substituting the derivative of \[{x^2}\] with respect to x as $2x$,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{x^2}\dfrac{d}{{dx}}\left( {{e^x}\log x} \right) - \left( {{e^x}\log x} \right)\left( {2x} \right)}}{{{x^4}}}\]
Now, applying product rule of differentiation $\dfrac{d}{{dx}}\left( {f(x) \times g(x)} \right) = g(x) \times \dfrac{d}{{dx}}\left( {f(x)} \right) + f(x) \times \dfrac{d}{{dx}}\left( {g(x)} \right)$, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{x^2}\left[ {{e^x}\dfrac{d}{{dx}}\left( {\log x} \right) + \log x\dfrac{d}{{dx}}\left( {{e^x}} \right)} \right] - \left( {{e^x}\log x} \right)\left( {2x} \right)}}{{{x^4}}}\]
Now, we know that the derivative of \[\log x\] is \[\left( {\dfrac{1}{x}} \right)\]. So, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{x^2}\left[ {{e^x}\left( {\dfrac{1}{x}} \right) + \log x\left( {{e^x}} \right)} \right] - \left( {{e^x}\log x} \right)\left( {2x} \right)}}{{{x^4}}}\]
Taking $x{e^x}$ common from all the terms,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^x}{x^2}\left[ {\left( {\dfrac{1}{x}} \right) + \log x} \right] - {e^x}\left( {\log x} \right)\left( {2x} \right)}}{{{x^4}}}\]
Cancelling common factors in numerator and denominator, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^x}x\left\{ {\left[ {1 + x\log x} \right] - \left( {\log x} \right)\left( 2 \right)} \right\}}}{{{x^4}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^x}\left\{ {1 + x\log x - 2\log x} \right\}}}{{{x^3}}}\]
Now, simplifying the expression to match the options, we get,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^x}\left[ {1 + \left( {x - 2} \right)\log x} \right]}}{{{x^3}}}\]
\[\therefore \dfrac{{dy}}{{dx}} = \dfrac{{{e^x}\left[ {1 + \left( {x - 2} \right)\log x} \right]}}{{{x^3}}}\]
Hence, option D is the correct answer.
Note: The given problem may also be solved using the first principle of differentiation. The product rule of differentiation involves differentiating a product of two functions and the chain rule of differentiation involves differentiating a composite by introducing new unknowns to ease the process and examine the behaviour of function layer by layer. The quotient rule involves differentiation of a rational function in some variable. One must know derivatives of some basic functions such as logarithmic and exponential function in order to tackle such problems.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Draw ray diagrams each showing i myopic eye and ii class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

