
If \[y = \dfrac{{{e^{2x}}\cos x}}{{x\sin x}}\] , then \[\dfrac{{dy}}{{dx}}\] \[ = \]
A) \[\dfrac{{{e^{2x}}\left[ {(2x - 1)\cot x - x\cos e{c^2}x} \right]}}{{{x^2}}}\]
B) \[\dfrac{{{e^{2x}}\left[ {(2x + 1)\cot x - x\cos e{c^2}x} \right]}}{{{x^2}}}\]
C) \[\dfrac{{{e^{2x}}\left[ {(2x - 1)\cot x + x\cos e{c^2}x} \right]}}{{{x^2}}}\]
D) None of these
Answer
509.4k+ views
Hint: In this question, we have to differentiate the given function \[y = \dfrac{{{e^{2x}}\cos x}}{{x\sin x}}\] with respect to \[x\]. We will proceed with using the formula for differentiation for division of two numbers. Then we proceed step by step and solve to get the desired result. We will also use the trigonometric identity \[{\sin ^2}x + {\cos ^2}x = 1\] as required.
Formula used: We will use the formula for differentiation for division of two terms.
I.e. \[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{d}{{dx}}\left( u \right) - u\dfrac{d}{{dx}}\left( v \right)}}{{{v^2}}}\]
And formula for differentiation for products of two terms.
I.e. \[\dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{d}{{dx}}\left( u \right) + u\dfrac{d}{{dx}}\left( v \right)\]
Complete step by step answer:
Consider the given question,
We are given \[y = \dfrac{{{e^{2x}}\cos x}}{{x\sin x}}\], we have to find the value of \[\dfrac{{dy}}{{dx}}\]
I.e. We have to differentiate with respect to \[x\].
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{{e^{2x}}\cos x}}{{x\sin x}}} \right)\] --------(A)
Now, we use the formula for differentiation for division of two terms
\[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{d}{{dx}}\left( u \right) - u\dfrac{d}{{dx}}\left( v \right)}}{{{v^2}}}\]
Compare equation (A) with the above formula, then
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{x\sin x\dfrac{d}{{dx}}\left( {{e^{2x}}\cos x} \right) - ({e^{2x}}\cos x)\dfrac{d}{{dx}}\left( {x\sin x} \right)}}{{{{(x\sin x)}^2}}}\] …………………(1)
Now we find the value of \[\dfrac{\operatorname{d} }{{dx}}({e^{2x}}\cos x)\] and \[\dfrac{\operatorname{d} }{{dx}}(x\sin x)\].
I.e. \[\dfrac{\operatorname{d} }{{dx}}({e^{2x}}\cos x) = {e^{2x}}\dfrac{d}{{dx}}(\cos x) + \cos x\dfrac{d}{{dx}}({e^{2x}})\]
\[ \Rightarrow \dfrac{\operatorname{d} }{{dx}}({e^{2x}}\cos x) = {e^{2x}}( - \sin x) + \cos x(2{e^{2x}})\]
On simplifying, we have
\[ \Rightarrow \dfrac{\operatorname{d} }{{dx}}({e^{2x}}\cos x) = {e^{2x}}(2\cos x - \sin x)\] --(2)
And \[\dfrac{\operatorname{d} }{{dx}}(x\sin x) = x\dfrac{d}{{dx}}(\sin x) + \sin x\dfrac{d}{{dx}}(x)\]
\[ \Rightarrow \dfrac{\operatorname{d} }{{dx}}(x\sin x) = x\cos x + \sin x\] --- (3)
Substituting the values from equation (2) and equation (3) in equation (1) we have,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{x\sin x\dfrac{d}{{dx}}\left( {{e^{2x}}\cos x} \right) - ({e^{2x}}\cos x)\dfrac{d}{{dx}}\left( {x\sin x} \right)}}{{{{(x\sin x)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{x\sin x\left( {{e^{2x}}(2\cos x - \sin x)} \right) - ({e^{2x}}\cos x)\left( {\sin x + x\cos x} \right)}}{{{{(x\sin x)}^2}}}\]
On taking common \[{e^{2x}}\] and simplifying , we have
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^{2x}}\left\{ {2x\sin x\cos x - x{{\sin }^2}x - \sin x\cos x - x{{\cos }^2}x} \right\}}}{{{{(x\sin x)}^2}}}\]
Again simplifying by taking common \[\sin x\cos x\] and \[x\] , we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^{2x}}\left\{ {\sin x\cos x(2x - 1) - x({{\sin }^2}x + {{\cos }^2}x)} \right\}}}{{{x^2}{{\sin }^2}x}}\]
We know that \[{\sin ^2}x + {\cos ^2}x = 1\]thus, we have
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^{2x}}\left\{ {\sin x\cos x(2x - 1) - x(1)} \right\}}}{{{x^2}{{\sin }^2}x}}\]
Dividing the numerator and denominator by \[{\sin ^2}x\]we have ,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^{2x}}\left\{ {\dfrac{{\cos x}}{{\sin x}}(2x - 1) + x(\dfrac{1}{{{{\sin }^2}x}})} \right\}}}{{{x^2}}}\]
We know that \[\cot x = \dfrac{{\cos x}}{{\sin x}}\] and \[cose{c^2}x = \dfrac{1}{{{{\sin }^2}x}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^{2x}}\left\{ {(2x - 1)\cot x + x{{\operatorname{cosec} }^2}x} \right\}}}{{{x^2}}}\]
Hence, the option \[C\] is correct.
Note:
1. We must remember the formulas for differentiation. Some common formula for differentiation are :
\[\dfrac{d}{{dx}}(\sin x) = \cos x\]
\[\dfrac{d}{{dx}}(\cos x) = - \sin x\]
\[\dfrac{d}{{dx}}({e^x}) = {e^x}\]
\[\dfrac{d}{{dx}}(x) = 1\]
2. While differentiation of function of function, we differentiate each and write as a product. For example, we know that \[\dfrac{d}{{dx}}({e^x}) = {e^x}\] but when we have to differentiate \[{e^{2x}}\], we first differentiate \[{e^{2x}}\]with respect to \[x\] and then differentiate the power (i.e. \[2x\]) to get the final differentiation .
i.e., \[\dfrac{d}{{dx}}({e^{2x}}) = {e^{2x}}\dfrac{d}{{dx}}(2x) = 2{e^{2x}}\].
3. Differentiation of constant terms is always zero. And when a constant term is present as
a product, we keep constant outside of differentiation .
Formula used: We will use the formula for differentiation for division of two terms.
I.e. \[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{d}{{dx}}\left( u \right) - u\dfrac{d}{{dx}}\left( v \right)}}{{{v^2}}}\]
And formula for differentiation for products of two terms.
I.e. \[\dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{d}{{dx}}\left( u \right) + u\dfrac{d}{{dx}}\left( v \right)\]
Complete step by step answer:
Consider the given question,
We are given \[y = \dfrac{{{e^{2x}}\cos x}}{{x\sin x}}\], we have to find the value of \[\dfrac{{dy}}{{dx}}\]
I.e. We have to differentiate with respect to \[x\].
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{{e^{2x}}\cos x}}{{x\sin x}}} \right)\] --------(A)
Now, we use the formula for differentiation for division of two terms
\[\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{d}{{dx}}\left( u \right) - u\dfrac{d}{{dx}}\left( v \right)}}{{{v^2}}}\]
Compare equation (A) with the above formula, then
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{x\sin x\dfrac{d}{{dx}}\left( {{e^{2x}}\cos x} \right) - ({e^{2x}}\cos x)\dfrac{d}{{dx}}\left( {x\sin x} \right)}}{{{{(x\sin x)}^2}}}\] …………………(1)
Now we find the value of \[\dfrac{\operatorname{d} }{{dx}}({e^{2x}}\cos x)\] and \[\dfrac{\operatorname{d} }{{dx}}(x\sin x)\].
I.e. \[\dfrac{\operatorname{d} }{{dx}}({e^{2x}}\cos x) = {e^{2x}}\dfrac{d}{{dx}}(\cos x) + \cos x\dfrac{d}{{dx}}({e^{2x}})\]
\[ \Rightarrow \dfrac{\operatorname{d} }{{dx}}({e^{2x}}\cos x) = {e^{2x}}( - \sin x) + \cos x(2{e^{2x}})\]
On simplifying, we have
\[ \Rightarrow \dfrac{\operatorname{d} }{{dx}}({e^{2x}}\cos x) = {e^{2x}}(2\cos x - \sin x)\] --(2)
And \[\dfrac{\operatorname{d} }{{dx}}(x\sin x) = x\dfrac{d}{{dx}}(\sin x) + \sin x\dfrac{d}{{dx}}(x)\]
\[ \Rightarrow \dfrac{\operatorname{d} }{{dx}}(x\sin x) = x\cos x + \sin x\] --- (3)
Substituting the values from equation (2) and equation (3) in equation (1) we have,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{x\sin x\dfrac{d}{{dx}}\left( {{e^{2x}}\cos x} \right) - ({e^{2x}}\cos x)\dfrac{d}{{dx}}\left( {x\sin x} \right)}}{{{{(x\sin x)}^2}}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{x\sin x\left( {{e^{2x}}(2\cos x - \sin x)} \right) - ({e^{2x}}\cos x)\left( {\sin x + x\cos x} \right)}}{{{{(x\sin x)}^2}}}\]
On taking common \[{e^{2x}}\] and simplifying , we have
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^{2x}}\left\{ {2x\sin x\cos x - x{{\sin }^2}x - \sin x\cos x - x{{\cos }^2}x} \right\}}}{{{{(x\sin x)}^2}}}\]
Again simplifying by taking common \[\sin x\cos x\] and \[x\] , we get
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^{2x}}\left\{ {\sin x\cos x(2x - 1) - x({{\sin }^2}x + {{\cos }^2}x)} \right\}}}{{{x^2}{{\sin }^2}x}}\]
We know that \[{\sin ^2}x + {\cos ^2}x = 1\]thus, we have
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^{2x}}\left\{ {\sin x\cos x(2x - 1) - x(1)} \right\}}}{{{x^2}{{\sin }^2}x}}\]
Dividing the numerator and denominator by \[{\sin ^2}x\]we have ,
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^{2x}}\left\{ {\dfrac{{\cos x}}{{\sin x}}(2x - 1) + x(\dfrac{1}{{{{\sin }^2}x}})} \right\}}}{{{x^2}}}\]
We know that \[\cot x = \dfrac{{\cos x}}{{\sin x}}\] and \[cose{c^2}x = \dfrac{1}{{{{\sin }^2}x}}\]
\[ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{e^{2x}}\left\{ {(2x - 1)\cot x + x{{\operatorname{cosec} }^2}x} \right\}}}{{{x^2}}}\]
Hence, the option \[C\] is correct.
Note:
1. We must remember the formulas for differentiation. Some common formula for differentiation are :
\[\dfrac{d}{{dx}}(\sin x) = \cos x\]
\[\dfrac{d}{{dx}}(\cos x) = - \sin x\]
\[\dfrac{d}{{dx}}({e^x}) = {e^x}\]
\[\dfrac{d}{{dx}}(x) = 1\]
2. While differentiation of function of function, we differentiate each and write as a product. For example, we know that \[\dfrac{d}{{dx}}({e^x}) = {e^x}\] but when we have to differentiate \[{e^{2x}}\], we first differentiate \[{e^{2x}}\]with respect to \[x\] and then differentiate the power (i.e. \[2x\]) to get the final differentiation .
i.e., \[\dfrac{d}{{dx}}({e^{2x}}) = {e^{2x}}\dfrac{d}{{dx}}(2x) = 2{e^{2x}}\].
3. Differentiation of constant terms is always zero. And when a constant term is present as
a product, we keep constant outside of differentiation .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

