
If $ y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{c}{{\left( {x - c} \right)}} + 1 $ then $ \dfrac{{y'}}{y} = \dfrac{k}{x}\left( {\dfrac{a}{{a - x}} + \dfrac{b}{{b - x}} + \dfrac{c}{{c - x}}} \right) $ where $ k = $ ( $ a,b,c $ are non-real numbers and $ x \ne a,b,c $ ).
A. $ - 1 $
B. $ 1 $
C. $ 2 $
D. $ - 3 $
Answer
517.2k+ views
Hint: In order to find the value of $ k $ , initiate by simplifying the equation $ y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{c}{{\left( {x - c} \right)}} + 1 $ into its simplest term possible, then differentiate it with respect to $ x $ .Then compare it with the second equation given and get the result.
Formula used:
$ \log \dfrac{a}{b} = \log a - \log b $
$ \log a.b = \log a + \log b $
$ \log {a^n} = n\log a $
\[\dfrac{{d\log y}}{{dx}} = \dfrac{1}{y}\dfrac{{dy}}{{dx}}\]
$ \dfrac{{d\log x}}{{dx}} = \dfrac{1}{x} $
Complete step by step solution:
We are given with an equation $ y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{c}{{\left( {x - c} \right)}} + 1 $ .
Starting with simplifying the equation.
Solving the last two operands of the right-hand side, multiplying and dividing $ 1 $ by $ \left( {x - c} \right) $ in order to get the same denominator. And by this we get:
$ y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{c}{{\left( {x - c} \right)}} + \dfrac{{1\left( {x - c} \right)}}{{\left( {x - c} \right)}} $
Since, the last two have same denominator, so adding them, we get:
$
\Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{c + x - c}}{{\left( {x - c} \right)}} \\
\Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{x}{{\left( {x - c} \right)}} \\
$
Similarly, multiplying and dividing $ \dfrac{x}{{\left( {x - c} \right)}} $ by $ \left( {x - b} \right) $ in order to get the same denominator as it’s previous operand, and we get:
$ \Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{x}{{\left( {x - c} \right)}} \times \dfrac{{\left( {x - b} \right)}}{{\left( {x - b} \right)}} $
Simplifying the last operand, we get:
$ \Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{x\left( {x - b} \right)}}{{\left( {x - c} \right)\left( {x - b} \right)}} $
Opening the parenthesis of the last operand:
$ \Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{{x^2} - bx}}{{\left( {x - c} \right)\left( {x - b} \right)}} $
Since, the 2nd and 3rd operand have the same denominator, so adding the numerator terms and we get:
$
\Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx + {x^2} - bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} \\
\Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{{x^2}}}{{\left( {x - b} \right)\left( {x - c} \right)}} \;
$
Similarly, multiplying and dividing $ \dfrac{{{x^2}}}{{\left( {x - b} \right)\left( {x - c} \right)}} $ by $ \left( {x - a} \right) $ , in order to have the same denominator as the previous operand:
$ \Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{{x^2}}}{{\left( {x - b} \right)\left( {x - c} \right)}} \times \dfrac{{\left( {x - a} \right)}}{{\left( {x - a} \right)}} $
Simplifying the second operand:
$ \Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{{x^2}\left( {x - a} \right)}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} $
Opening the parenthesis of the last operand:
$ \Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{{x^3} - a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} $
Since, the 1st and 2nd operand have the same denominator, so adding the numerator terms and we get:
$
\Rightarrow y = \dfrac{{a{x^2} + {x^3} - a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} \\
\Rightarrow y = \dfrac{{{x^3}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} \;
$
Therefore, the simplified term of $ y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{c}{{\left( {x - c} \right)}} + 1 $ is $ y = \dfrac{{{x^3}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} $ .
Taking $ \log $ both the sides of the obtained equation:
$ \log y = \log \left( {\dfrac{{{x^3}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}}} \right) $
From the logarithmic rules, we know that $ \log \dfrac{a}{b} = \log a - \log b $ , $ \log a.b = \log a + \log b $ , and $ \log {a^n} = n\log a $ , so writing the above equation accordingly, we get:
$ \log y = \log {x^3} - \log \left( {\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)} \right) $
Again, applying the logarithmic rule in $ \log \left( {\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)} \right) $ and $ \log {x^3} $ , we get:
\[
\log y = \log {x^3} - \log \left( {\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)} \right) \\
\Rightarrow \log y = 3\log x - \left( {\log \left( {x - a} \right) + \log \left( {x - b} \right) + \log \left( {x - c} \right)} \right) \;
\]
Opening the outer parenthesis:
$ \log y = 3\log x - \log \left( {x - a} \right) - \log \left( {x - b} \right) - \log \left( {x - c} \right) $
Differentiating both sides of the above equation with respect to $ x $ , we get:
$ \dfrac{{d\log y}}{{dx}} = 3\dfrac{{d\log x}}{{dx}} - \dfrac{{d\log \left( {x - a} \right)}}{{dx}} - \dfrac{{d\log \left( {x - b} \right)}}{{dx}} - \dfrac{{d\log \left( {x - c} \right)}}{{dx}} $
From differentiation formula, we know that: \[\dfrac{{d\log y}}{{dx}} = \dfrac{1}{y}\dfrac{{dy}}{{dx}}\] and $ \dfrac{{d\log x}}{{dx}} = \dfrac{1}{x} $ , since $ a,b,c $ are constants, so they will create any difference in differentiation, and we get:
$
\Rightarrow \dfrac{{d\log y}}{{dx}} = 3\dfrac{{d\log x}}{{dx}} - \dfrac{{d\log \left( {x - a} \right)}}{{dx}} - \dfrac{{d\log \left( {x - b} \right)}}{{dx}} - \dfrac{{d\log \left( {x - c} \right)}}{{dx}} \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{3}{x} - \dfrac{1}{{x - a}} - \dfrac{1}{{x - b}} - \dfrac{1}{{x - c}} \;
$
We can expand the term $ \dfrac{3}{x} $ as $ \dfrac{3}{x} = \dfrac{1}{x} + \dfrac{1}{x} + \dfrac{1}{x} $ , so expanding the term and making a pair with other terms in a parenthesis, and we get:
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{3}{x} - \dfrac{1}{{x - a}} - \dfrac{1}{{x - b}} - \dfrac{1}{{x - c}} $
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{1}{x} - \dfrac{1}{{x - a}}} \right) + \left( {\dfrac{1}{x} - \dfrac{1}{{x - b}}} \right) + \left( {\dfrac{1}{x} - \dfrac{1}{{x - c}}} \right) $
Solving the parenthesis, for each operand, and we can do it so by making the denominator common by multiplying denominator to the alternate numerator and simplifying, like for $ \left( {\dfrac{1}{x} - \dfrac{1}{{x - a}}} \right) = \left( {\dfrac{{\left( {x - a} \right)}}{{x\left( {x - a} \right)}} - \dfrac{x}{{x\left( {x - a} \right)}}} \right) = \dfrac{{x - a - x}}{{x\left( {x - a} \right)}} = \dfrac{{ - a}}{{x - a}} $ :
Similarly, simplifying for all other operands, we get:
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{{\left( {x - a} \right)}}{{x\left( {x - a} \right)}} - \dfrac{x}{{x\left( {x - a} \right)}}} \right) + \left( {\dfrac{{\left( {x - b} \right)}}{{x\left( {x - b} \right)}} - \dfrac{x}{{\left( {x - b} \right)}}} \right) + \left( {\dfrac{{\left( {x - c} \right)}}{{x\left( {x - c} \right)}} - \dfrac{x}{{\left( {x - c} \right)}}} \right)\]
Solving the values inside parentheses:
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{{x - a - x}}{{x\left( {x - a} \right)}}} \right) + \left( {\dfrac{{x - b - x}}{{x\left( {x - b} \right)}}} \right) + \left( {\dfrac{{x - c - x}}{{x\left( {x - c} \right)}}} \right)\]
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{{ - a}}{{x\left( {x - a} \right)}}} \right) + \left( {\dfrac{{ - b}}{{x\left( {x - b} \right)}}} \right) + \left( {\dfrac{{ - c}}{{x\left( {x - c} \right)}}} \right)\]
Taking \[ - 1\] common from \[a,\left( {x - a} \right)\] and others, we get:
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{{ - a}}{{ - x\left( {a - x} \right)}}} \right) + \left( {\dfrac{{ - b}}{{ - x\left( {b - x} \right)}}} \right) + \left( {\dfrac{{ - c}}{{ - x\left( {c - x} \right)}}} \right)\]
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{a}{{x\left( {a - x} \right)}}} \right) + \left( {\dfrac{b}{{x\left( {b - x} \right)}}} \right) + \left( {\dfrac{c}{{x\left( {c - x} \right)}}} \right)\]
Taking \[\dfrac{1}{x}\] common outside the parentheses:
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{x}\left( {\dfrac{a}{{\left( {a - x} \right)}} + \dfrac{b}{{\left( {b - x} \right)}} + \dfrac{c}{{\left( {c - x} \right)}}} \right)\]
Since, we can write \[\dfrac{{dy}}{{dx}} = y'\] , so writing this, and we get:
\[ \Rightarrow \dfrac{{y'}}{y} = \dfrac{1}{x}\left( {\dfrac{a}{{a - x}} + \dfrac{b}{{b - x}} + \dfrac{c}{{c - x}}} \right)\] ………(1)
The other equation give to us is $ \dfrac{{y'}}{y} = \dfrac{k}{x}\left( {\dfrac{a}{{a - x}} + \dfrac{b}{{b - x}} + \dfrac{c}{{c - x}}} \right) $ ……(2)
Comparing equation (1) and (2), we get:
$ k = 1 $
Which matches with the option 2.
Therefore, If $ y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{c}{{\left( {x - c} \right)}} + 1 $ then $ \dfrac{{y'}}{y} = \dfrac{k}{x}\left( {\dfrac{a}{{a - x}} + \dfrac{b}{{b - x}} + \dfrac{c}{{c - x}}} \right) $ where $ k = 1 $ .
Hence, Option B is Correct.
So, the correct answer is “Option B”.
Note: It’s always preferred to solve step by step for ease rather than solving at once, otherwise there is a huge chance of error.
It’s important to take logarithmic function’s both sides, we cannot directly differentiate the equation obtained.
Formula used:
$ \log \dfrac{a}{b} = \log a - \log b $
$ \log a.b = \log a + \log b $
$ \log {a^n} = n\log a $
\[\dfrac{{d\log y}}{{dx}} = \dfrac{1}{y}\dfrac{{dy}}{{dx}}\]
$ \dfrac{{d\log x}}{{dx}} = \dfrac{1}{x} $
Complete step by step solution:
We are given with an equation $ y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{c}{{\left( {x - c} \right)}} + 1 $ .
Starting with simplifying the equation.
Solving the last two operands of the right-hand side, multiplying and dividing $ 1 $ by $ \left( {x - c} \right) $ in order to get the same denominator. And by this we get:
$ y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{c}{{\left( {x - c} \right)}} + \dfrac{{1\left( {x - c} \right)}}{{\left( {x - c} \right)}} $
Since, the last two have same denominator, so adding them, we get:
$
\Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{c + x - c}}{{\left( {x - c} \right)}} \\
\Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{x}{{\left( {x - c} \right)}} \\
$
Similarly, multiplying and dividing $ \dfrac{x}{{\left( {x - c} \right)}} $ by $ \left( {x - b} \right) $ in order to get the same denominator as it’s previous operand, and we get:
$ \Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{x}{{\left( {x - c} \right)}} \times \dfrac{{\left( {x - b} \right)}}{{\left( {x - b} \right)}} $
Simplifying the last operand, we get:
$ \Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{x\left( {x - b} \right)}}{{\left( {x - c} \right)\left( {x - b} \right)}} $
Opening the parenthesis of the last operand:
$ \Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{{x^2} - bx}}{{\left( {x - c} \right)\left( {x - b} \right)}} $
Since, the 2nd and 3rd operand have the same denominator, so adding the numerator terms and we get:
$
\Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx + {x^2} - bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} \\
\Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{{x^2}}}{{\left( {x - b} \right)\left( {x - c} \right)}} \;
$
Similarly, multiplying and dividing $ \dfrac{{{x^2}}}{{\left( {x - b} \right)\left( {x - c} \right)}} $ by $ \left( {x - a} \right) $ , in order to have the same denominator as the previous operand:
$ \Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{{x^2}}}{{\left( {x - b} \right)\left( {x - c} \right)}} \times \dfrac{{\left( {x - a} \right)}}{{\left( {x - a} \right)}} $
Simplifying the second operand:
$ \Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{{x^2}\left( {x - a} \right)}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} $
Opening the parenthesis of the last operand:
$ \Rightarrow y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{{x^3} - a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} $
Since, the 1st and 2nd operand have the same denominator, so adding the numerator terms and we get:
$
\Rightarrow y = \dfrac{{a{x^2} + {x^3} - a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} \\
\Rightarrow y = \dfrac{{{x^3}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} \;
$
Therefore, the simplified term of $ y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{c}{{\left( {x - c} \right)}} + 1 $ is $ y = \dfrac{{{x^3}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} $ .
Taking $ \log $ both the sides of the obtained equation:
$ \log y = \log \left( {\dfrac{{{x^3}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}}} \right) $
From the logarithmic rules, we know that $ \log \dfrac{a}{b} = \log a - \log b $ , $ \log a.b = \log a + \log b $ , and $ \log {a^n} = n\log a $ , so writing the above equation accordingly, we get:
$ \log y = \log {x^3} - \log \left( {\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)} \right) $
Again, applying the logarithmic rule in $ \log \left( {\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)} \right) $ and $ \log {x^3} $ , we get:
\[
\log y = \log {x^3} - \log \left( {\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)} \right) \\
\Rightarrow \log y = 3\log x - \left( {\log \left( {x - a} \right) + \log \left( {x - b} \right) + \log \left( {x - c} \right)} \right) \;
\]
Opening the outer parenthesis:
$ \log y = 3\log x - \log \left( {x - a} \right) - \log \left( {x - b} \right) - \log \left( {x - c} \right) $
Differentiating both sides of the above equation with respect to $ x $ , we get:
$ \dfrac{{d\log y}}{{dx}} = 3\dfrac{{d\log x}}{{dx}} - \dfrac{{d\log \left( {x - a} \right)}}{{dx}} - \dfrac{{d\log \left( {x - b} \right)}}{{dx}} - \dfrac{{d\log \left( {x - c} \right)}}{{dx}} $
From differentiation formula, we know that: \[\dfrac{{d\log y}}{{dx}} = \dfrac{1}{y}\dfrac{{dy}}{{dx}}\] and $ \dfrac{{d\log x}}{{dx}} = \dfrac{1}{x} $ , since $ a,b,c $ are constants, so they will create any difference in differentiation, and we get:
$
\Rightarrow \dfrac{{d\log y}}{{dx}} = 3\dfrac{{d\log x}}{{dx}} - \dfrac{{d\log \left( {x - a} \right)}}{{dx}} - \dfrac{{d\log \left( {x - b} \right)}}{{dx}} - \dfrac{{d\log \left( {x - c} \right)}}{{dx}} \\
\Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{3}{x} - \dfrac{1}{{x - a}} - \dfrac{1}{{x - b}} - \dfrac{1}{{x - c}} \;
$
We can expand the term $ \dfrac{3}{x} $ as $ \dfrac{3}{x} = \dfrac{1}{x} + \dfrac{1}{x} + \dfrac{1}{x} $ , so expanding the term and making a pair with other terms in a parenthesis, and we get:
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{3}{x} - \dfrac{1}{{x - a}} - \dfrac{1}{{x - b}} - \dfrac{1}{{x - c}} $
$ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{1}{x} - \dfrac{1}{{x - a}}} \right) + \left( {\dfrac{1}{x} - \dfrac{1}{{x - b}}} \right) + \left( {\dfrac{1}{x} - \dfrac{1}{{x - c}}} \right) $
Solving the parenthesis, for each operand, and we can do it so by making the denominator common by multiplying denominator to the alternate numerator and simplifying, like for $ \left( {\dfrac{1}{x} - \dfrac{1}{{x - a}}} \right) = \left( {\dfrac{{\left( {x - a} \right)}}{{x\left( {x - a} \right)}} - \dfrac{x}{{x\left( {x - a} \right)}}} \right) = \dfrac{{x - a - x}}{{x\left( {x - a} \right)}} = \dfrac{{ - a}}{{x - a}} $ :
Similarly, simplifying for all other operands, we get:
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{{\left( {x - a} \right)}}{{x\left( {x - a} \right)}} - \dfrac{x}{{x\left( {x - a} \right)}}} \right) + \left( {\dfrac{{\left( {x - b} \right)}}{{x\left( {x - b} \right)}} - \dfrac{x}{{\left( {x - b} \right)}}} \right) + \left( {\dfrac{{\left( {x - c} \right)}}{{x\left( {x - c} \right)}} - \dfrac{x}{{\left( {x - c} \right)}}} \right)\]
Solving the values inside parentheses:
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{{x - a - x}}{{x\left( {x - a} \right)}}} \right) + \left( {\dfrac{{x - b - x}}{{x\left( {x - b} \right)}}} \right) + \left( {\dfrac{{x - c - x}}{{x\left( {x - c} \right)}}} \right)\]
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{{ - a}}{{x\left( {x - a} \right)}}} \right) + \left( {\dfrac{{ - b}}{{x\left( {x - b} \right)}}} \right) + \left( {\dfrac{{ - c}}{{x\left( {x - c} \right)}}} \right)\]
Taking \[ - 1\] common from \[a,\left( {x - a} \right)\] and others, we get:
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{{ - a}}{{ - x\left( {a - x} \right)}}} \right) + \left( {\dfrac{{ - b}}{{ - x\left( {b - x} \right)}}} \right) + \left( {\dfrac{{ - c}}{{ - x\left( {c - x} \right)}}} \right)\]
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \left( {\dfrac{a}{{x\left( {a - x} \right)}}} \right) + \left( {\dfrac{b}{{x\left( {b - x} \right)}}} \right) + \left( {\dfrac{c}{{x\left( {c - x} \right)}}} \right)\]
Taking \[\dfrac{1}{x}\] common outside the parentheses:
\[ \Rightarrow \dfrac{1}{y}\dfrac{{dy}}{{dx}} = \dfrac{1}{x}\left( {\dfrac{a}{{\left( {a - x} \right)}} + \dfrac{b}{{\left( {b - x} \right)}} + \dfrac{c}{{\left( {c - x} \right)}}} \right)\]
Since, we can write \[\dfrac{{dy}}{{dx}} = y'\] , so writing this, and we get:
\[ \Rightarrow \dfrac{{y'}}{y} = \dfrac{1}{x}\left( {\dfrac{a}{{a - x}} + \dfrac{b}{{b - x}} + \dfrac{c}{{c - x}}} \right)\] ………(1)
The other equation give to us is $ \dfrac{{y'}}{y} = \dfrac{k}{x}\left( {\dfrac{a}{{a - x}} + \dfrac{b}{{b - x}} + \dfrac{c}{{c - x}}} \right) $ ……(2)
Comparing equation (1) and (2), we get:
$ k = 1 $
Which matches with the option 2.
Therefore, If $ y = \dfrac{{a{x^2}}}{{\left( {x - a} \right)\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{{bx}}{{\left( {x - b} \right)\left( {x - c} \right)}} + \dfrac{c}{{\left( {x - c} \right)}} + 1 $ then $ \dfrac{{y'}}{y} = \dfrac{k}{x}\left( {\dfrac{a}{{a - x}} + \dfrac{b}{{b - x}} + \dfrac{c}{{c - x}}} \right) $ where $ k = 1 $ .
Hence, Option B is Correct.
So, the correct answer is “Option B”.
Note: It’s always preferred to solve step by step for ease rather than solving at once, otherwise there is a huge chance of error.
It’s important to take logarithmic function’s both sides, we cannot directly differentiate the equation obtained.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

India is a sovereign socialist secular democratic republic class 12 social science CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

How many states of matter are there in total class 12 chemistry CBSE

