
If \[y = \cos ecx + \cot x\], then find: \[\sin x\dfrac{{{d^2}y}}{{d{x^2}}} + {y^2}\].
Answer
587.4k+ views
Hint: In this problem, first we need to find the first derivative of the given function. Then, find the second derivative of the function and simplify it by back substitution. Now substitute the obtained expressions into the given differential equation.
Complete step by step answer:
The first derivative of the function \[y = \cos ecx + \cot x\] is obtained as shown below.
\[
\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\cos ecx + \cot x} \right) \\
= \dfrac{d}{{dx}}\left( {\cos ecx} \right) + \dfrac{d}{{dx}}\left( {\cot x} \right) \\
= \left( { - \cos ecx\cot x} \right) + \left( { - \cos e{c^2}x} \right) \\
= - \cos ecx\left( {\cot x + \cos ecx} \right) \\
= - y\cos ecx \\
\]
Now, find the second derivative of the function \[y = \cos ecx + \cot x\] using the product rule as shown below.
\[
\dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right) = - \dfrac{d}{{dx}}\left( {y\cos ecx} \right) \\
\dfrac{{{d^2}y}}{{d{x^2}}} = - \left[ {y\dfrac{d}{{dx}}\left( {\cos ecx} \right) + \cos ecx\dfrac{d}{{dx}}\left( y \right)} \right] \\
= - \left[ {y\left( { - \cos ecx\cot x} \right) + \cos ecx\dfrac{{dy}}{{dx}}} \right] \\
= - \left[ { - y\cos ecx\cot x + \cos ecx\dfrac{{dy}}{{dx}}} \right] \\
\]
Now, substitute \[- y\cos ecx\] for \[\dfrac{{dy}}{{dx}}\] in the above expression.
\[
\dfrac{{{d^2}y}}{{d{x^2}}} = - \left[ { - y\cos ecx\cot x + \cos ecx\left( { - y\cos ecx} \right)} \right] \\
= - \left( { - y\cos ecx} \right)\left[ {\cot x + \cos ecx} \right] \\
= y\cos ecx\left[ y \right] \\
= {y^2}\cos ecx \\
\]
Now, substitute \[{y^2}\cos ecx\] for \[\dfrac{{{d^2}y}}{{d{x^2}}}\] in expression \[\sin x\dfrac{{{d^2}y}}{{d{x^2}}} + {y^2}\].
\[
\,\,\,\,\,\sin x\left( {{y^2}\cos ecx} \right) + {y^2} \\
\Rightarrow \sin x\left( {{y^2} \cdot \dfrac{1}{{\sin x}}} \right) + {y^2} \\
\Rightarrow {y^2} + {y^2} \\
\Rightarrow 2{y^2} \\
\]
Thus, the expression for the differential equation \[\sin x\dfrac{{{d^2}y}}{{d{x^2}}} + {y^2} \] is \[2{y^2} \].
Note: Always use back substitution while obtaining the first and second derivatives in order to minimize the complexity. The second derivative of the function f is derivative of derivative of the function f. The second derivative measures the instantaneous rate of change of the first derivative. In other words the second derivative tells whether the slope of the tangent line is increasing or decreasing.
Complete step by step answer:
The first derivative of the function \[y = \cos ecx + \cot x\] is obtained as shown below.
\[
\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\cos ecx + \cot x} \right) \\
= \dfrac{d}{{dx}}\left( {\cos ecx} \right) + \dfrac{d}{{dx}}\left( {\cot x} \right) \\
= \left( { - \cos ecx\cot x} \right) + \left( { - \cos e{c^2}x} \right) \\
= - \cos ecx\left( {\cot x + \cos ecx} \right) \\
= - y\cos ecx \\
\]
Now, find the second derivative of the function \[y = \cos ecx + \cot x\] using the product rule as shown below.
\[
\dfrac{d}{{dx}}\left( {\dfrac{{dy}}{{dx}}} \right) = - \dfrac{d}{{dx}}\left( {y\cos ecx} \right) \\
\dfrac{{{d^2}y}}{{d{x^2}}} = - \left[ {y\dfrac{d}{{dx}}\left( {\cos ecx} \right) + \cos ecx\dfrac{d}{{dx}}\left( y \right)} \right] \\
= - \left[ {y\left( { - \cos ecx\cot x} \right) + \cos ecx\dfrac{{dy}}{{dx}}} \right] \\
= - \left[ { - y\cos ecx\cot x + \cos ecx\dfrac{{dy}}{{dx}}} \right] \\
\]
Now, substitute \[- y\cos ecx\] for \[\dfrac{{dy}}{{dx}}\] in the above expression.
\[
\dfrac{{{d^2}y}}{{d{x^2}}} = - \left[ { - y\cos ecx\cot x + \cos ecx\left( { - y\cos ecx} \right)} \right] \\
= - \left( { - y\cos ecx} \right)\left[ {\cot x + \cos ecx} \right] \\
= y\cos ecx\left[ y \right] \\
= {y^2}\cos ecx \\
\]
Now, substitute \[{y^2}\cos ecx\] for \[\dfrac{{{d^2}y}}{{d{x^2}}}\] in expression \[\sin x\dfrac{{{d^2}y}}{{d{x^2}}} + {y^2}\].
\[
\,\,\,\,\,\sin x\left( {{y^2}\cos ecx} \right) + {y^2} \\
\Rightarrow \sin x\left( {{y^2} \cdot \dfrac{1}{{\sin x}}} \right) + {y^2} \\
\Rightarrow {y^2} + {y^2} \\
\Rightarrow 2{y^2} \\
\]
Thus, the expression for the differential equation \[\sin x\dfrac{{{d^2}y}}{{d{x^2}}} + {y^2} \] is \[2{y^2} \].
Note: Always use back substitution while obtaining the first and second derivatives in order to minimize the complexity. The second derivative of the function f is derivative of derivative of the function f. The second derivative measures the instantaneous rate of change of the first derivative. In other words the second derivative tells whether the slope of the tangent line is increasing or decreasing.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

