
If $y = {\cos ^{ - 1}}\left( {\dfrac{{x - {x^{ - 1}}}}{{x + {x^{ - 1}}}}} \right)$, then $\dfrac{{dy}}{{dx}} = $
A. $\dfrac{{ - 2}}{{1 + {x^2}}}$
B. $\dfrac{2}{{1 + {x^2}}}$
C. $\dfrac{1}{{1 + {x^2}}}$
D. $\dfrac{{ - 1}}{{1 + {x^2}}}$
Answer
522.9k+ views
Hint: Here, we have to find the derivative of $y = {\cos ^{ - 1}}\left( {\dfrac{{x - {x^{ - 1}}}}{{x + {x^{ - 1}}}}} \right)$. For that, first of all substitute ${x^{ - 1}} = \dfrac{1}{x}$ and then take the LCM and simplify. Then take out minus (-) common from numerator and use the formula
$ \Rightarrow {\cos ^{ - 1}}\left( { - \theta } \right) = \pi - \cos \theta $ and
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) = 2{\tan ^{ - 1}}x$
Now, we can easily find the derivative of the given function.
Complete step-by-step answer:
In this question, we are given a trigonometric equation and we need to find its derivative.
The given equation is : $y = {\cos ^{ - 1}}\left( {\dfrac{{x - {x^{ - 1}}}}{{x + {x^{ - 1}}}}} \right)$ - - - - - - - - - - - - - (1)
Now, there is no direct formula for differentiating equation (1), so we need to use some trigonometric formulas and relations to find its derivative.
First of all, x inverse means reciprocal of x. Therefore, substitute $\dfrac{1}{x}$ instead of ${x^{ - 1}}$ in equation (1), we get
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\dfrac{{x - \dfrac{1}{x}}}{{x + \dfrac{1}{x}}}} \right)$
Now, taking LCM, we get
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\dfrac{{\dfrac{{{x^2} - 1}}{x}}}{{\dfrac{{{x^2} + 1}}{x}}}} \right)$
Here, x gets cancelled. Therefore, we get
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\dfrac{{{x^2} - 1}}{{{x^2} + 1}}} \right)$- - - - - - - - - (2)
Now, take out minus (-) common from the numerator in equation (2), we get
$ \Rightarrow y = {\cos ^{ - 1}}\left[ { - \left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)} \right]$ - - - - - - - - - (3)
Now, we know that ${\cos ^{ - 1}}\left( { - \theta } \right) = \pi - \cos \theta $. Therefore, equation (3) becomes
$ \Rightarrow y = \pi - {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$ - - - - - - (4)
Now, we know that ${\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) = 2{\tan ^{ - 1}}x$.
Therefore, putting this value in equation (4), we get
$ \Rightarrow y = \pi - 2{\tan ^{ - 1}}x$
Now, differentiating the above equation, we get
$ \Rightarrow \dfrac{{dy}}{{dx}} = 0 - 2\dfrac{d}{{dx}}{\tan ^{ - 1}}x$
Now, we know that the derivative of ${\tan ^{ - 1}}x$ is equal to $\dfrac{1}{{1 + {x^2}}}$.
Therefore,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 2}}{{1 + {x^2}}}$
So, the correct answer is “Option A”.
Note: Here is the proof for ${\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) = 2{\tan ^{ - 1}}x$.
Let us take LHS.
$ \Rightarrow LHS = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$
Now, let $x = \tan \theta $
$ \Rightarrow \theta = {\tan ^{ - 1}}x$
$
\Rightarrow LHS = {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right) \\
\Rightarrow LHS = {\cos ^{ - 1}}\left( {\cos 2\theta } \right) \\
\Rightarrow LHS = 2\theta \\
\Rightarrow LHS = 2{\tan ^{ - 1}}x \\
$
$ \Rightarrow {\cos ^{ - 1}}\left( { - \theta } \right) = \pi - \cos \theta $ and
$ \Rightarrow {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) = 2{\tan ^{ - 1}}x$
Now, we can easily find the derivative of the given function.
Complete step-by-step answer:
In this question, we are given a trigonometric equation and we need to find its derivative.
The given equation is : $y = {\cos ^{ - 1}}\left( {\dfrac{{x - {x^{ - 1}}}}{{x + {x^{ - 1}}}}} \right)$ - - - - - - - - - - - - - (1)
Now, there is no direct formula for differentiating equation (1), so we need to use some trigonometric formulas and relations to find its derivative.
First of all, x inverse means reciprocal of x. Therefore, substitute $\dfrac{1}{x}$ instead of ${x^{ - 1}}$ in equation (1), we get
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\dfrac{{x - \dfrac{1}{x}}}{{x + \dfrac{1}{x}}}} \right)$
Now, taking LCM, we get
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\dfrac{{\dfrac{{{x^2} - 1}}{x}}}{{\dfrac{{{x^2} + 1}}{x}}}} \right)$
Here, x gets cancelled. Therefore, we get
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\dfrac{{{x^2} - 1}}{{{x^2} + 1}}} \right)$- - - - - - - - - (2)
Now, take out minus (-) common from the numerator in equation (2), we get
$ \Rightarrow y = {\cos ^{ - 1}}\left[ { - \left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)} \right]$ - - - - - - - - - (3)
Now, we know that ${\cos ^{ - 1}}\left( { - \theta } \right) = \pi - \cos \theta $. Therefore, equation (3) becomes
$ \Rightarrow y = \pi - {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$ - - - - - - (4)
Now, we know that ${\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) = 2{\tan ^{ - 1}}x$.
Therefore, putting this value in equation (4), we get
$ \Rightarrow y = \pi - 2{\tan ^{ - 1}}x$
Now, differentiating the above equation, we get
$ \Rightarrow \dfrac{{dy}}{{dx}} = 0 - 2\dfrac{d}{{dx}}{\tan ^{ - 1}}x$
Now, we know that the derivative of ${\tan ^{ - 1}}x$ is equal to $\dfrac{1}{{1 + {x^2}}}$.
Therefore,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - 2}}{{1 + {x^2}}}$
So, the correct answer is “Option A”.
Note: Here is the proof for ${\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right) = 2{\tan ^{ - 1}}x$.
Let us take LHS.
$ \Rightarrow LHS = {\cos ^{ - 1}}\left( {\dfrac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$
Now, let $x = \tan \theta $
$ \Rightarrow \theta = {\tan ^{ - 1}}x$
$
\Rightarrow LHS = {\cos ^{ - 1}}\left( {\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }}} \right) \\
\Rightarrow LHS = {\cos ^{ - 1}}\left( {\cos 2\theta } \right) \\
\Rightarrow LHS = 2\theta \\
\Rightarrow LHS = 2{\tan ^{ - 1}}x \\
$
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

