
If $y = {\cos ^{ - 1}}\left[ {\dfrac{{\left( {3\cos x - 4\sin x} \right)}}{5}} \right]$ then $\dfrac{{dy}}{{dx}}$ equals:
$\left( 1 \right)0$
$\left( 2 \right)1$
$\left( 3 \right) - 1$
$\left( 4 \right)\dfrac{1}{2}$
Answer
510k+ views
Hint: To solve this question, the standard trigonometric identity formulae and basic algebraic
operations have to be kept in mind. Trigonometric identities are equations involving functions which are true for all the angles for which the particular functions are defined. For example: $\cos \theta = \dfrac{1}{{\sec \theta }}$ and $\sin \theta = \dfrac{1}{{\cos ec\theta }}$ , are trigonometric identities since they hold for all values of $\theta $ except for values where $\sin \theta $ and $\cos \theta $ are not defined. The equation $\tan \theta = \cot \theta $ is a trigonometric equation but it
is not a trigonometric identity as it does not hold true for all the values of $\theta $ .
Complete step by step answer:
According to the given question;
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\dfrac{{3\cos x - 4\sin x}}{5}} \right)$
It can also be written as;
$ \Rightarrow y = \left( {\dfrac{3}{5}\cos x - \dfrac{4}{5}\sin x} \right){\text{ }}......\left( 1 \right)$
Let $\dfrac{3}{5} = \cos \theta $
We know that, $\cos \theta = \dfrac{{{\text{Adjacent}}}}{{{\text{Hypotenuse}}}}$
$ \Rightarrow \cos \theta = \dfrac{b}{h}$
Here, $b = 3{\text{ and }}h = 5$ ;
According to the Pythagoras theorem; ${h^2} = {p^2} + {b^2}$
Therefore perpendicular will be ${\text{p = }}\sqrt {{{\text{h}}^2} - {{\text{b}}^2}} {\text{ }}$
$\therefore {\text{P }} \Rightarrow \sqrt {{5^2} - {3^2}} {\text{ = 4}}$
$\because \sin \theta = \dfrac{{{\text{Perpendicular }}}}{{{\text{hypotenuse}}}}$
$ \Rightarrow \sin \theta = \dfrac{p}{h}$
$ \Rightarrow \sin \theta = \dfrac{4}{5}$
Therefore, $\cos \theta = \dfrac{3}{5}{\text{ and sin}}\theta {\text{ = }}\dfrac{4}{5}$ .
Put the values of $\cos \theta {\text{ and sin}}\theta $ in equation $\left( 1 \right)$, we get;
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\cos \theta \cos x - \sin \theta \sin x} \right){\text{ }}......\left( 2 \right)$
We know the standard formula for ; $\cos \left( {{\text{A}} + {\text{B}}} \right) = \cos {\text{A cosB}} - \sin {\text{A}}\sin {\text{B}}$
Using the above formula in equation $\left( 1 \right)$ , we get;
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\cos \left( {\theta + x} \right)} \right){\text{ }}......\left( 3 \right)$ $\left( {{\text{Here , A = }}\theta {\text{ and B = x}}} \right)$
We know that the cosine function and its inverse function cancels each other;
Therefore equation $\left( 3 \right)$, reduces to;
$ \Rightarrow y = \theta + x{\text{ }}......\left( 4 \right)$
$\because \cos \theta = \dfrac{3}{5}{\text{ }}\therefore \theta {\text{ = co}}{{\text{s}}^{ - 1}}\dfrac{3}{5}$
Now, put the value of $\theta $ , in equation $\left( 4 \right)$ we get;
$ \Rightarrow y = {\cos ^{ - 1}}\dfrac{3}{5} + x$
( $\because {\cos ^{ - 1}}\dfrac{3}{5}$ has a constant angle therefore it’s differentiation will be 0 )
Differentiating the above equation w.r.t. $x$ ;
$ \Rightarrow \dfrac{{dy}}{{dx}} = 0 + \dfrac{d}{{dx}}\left( x \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = 1$
Therefore, the correct answer for this question is $\dfrac{{dy}}{{dx}} = 1$ .
So, the correct answer is “Option 2”.
Note: We have used the standard formula of cosine of the difference and sum of two angles, i.e.
$\left( 1 \right)\cos \left( {{\text{A}} + {\text{B}}} \right) = \cos {\text{A cosB}} - \sin {\text{A}}\sin {\text{B}}$ , this formula holds true for all values of angles of ${\text{A and B}}$ , whether positive, negative or zero. $\left( 2 \right)\cos \left( {{\text{A}} - {\text{B}}} \right) = \cos {\text{A cosB + }}\sin {\text{A}}\sin {\text{B}}$ . Similarly the formula for sine of the difference and sum of two angles is $\left( 3 \right)\sin \left( {{\text{A}} + {\text{B}}} \right) = \sin {\text{A cosB + cosA}}\sin {\text{B}}$ and $\left( 4 \right)\sin \left( {{\text{A}} - {\text{B}}} \right) = \sin {\text{A cosB}} - {\text{cosA}}\sin {\text{B}}$ .
operations have to be kept in mind. Trigonometric identities are equations involving functions which are true for all the angles for which the particular functions are defined. For example: $\cos \theta = \dfrac{1}{{\sec \theta }}$ and $\sin \theta = \dfrac{1}{{\cos ec\theta }}$ , are trigonometric identities since they hold for all values of $\theta $ except for values where $\sin \theta $ and $\cos \theta $ are not defined. The equation $\tan \theta = \cot \theta $ is a trigonometric equation but it
is not a trigonometric identity as it does not hold true for all the values of $\theta $ .
Complete step by step answer:
According to the given question;
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\dfrac{{3\cos x - 4\sin x}}{5}} \right)$
It can also be written as;
$ \Rightarrow y = \left( {\dfrac{3}{5}\cos x - \dfrac{4}{5}\sin x} \right){\text{ }}......\left( 1 \right)$
Let $\dfrac{3}{5} = \cos \theta $
We know that, $\cos \theta = \dfrac{{{\text{Adjacent}}}}{{{\text{Hypotenuse}}}}$
$ \Rightarrow \cos \theta = \dfrac{b}{h}$
Here, $b = 3{\text{ and }}h = 5$ ;
According to the Pythagoras theorem; ${h^2} = {p^2} + {b^2}$
Therefore perpendicular will be ${\text{p = }}\sqrt {{{\text{h}}^2} - {{\text{b}}^2}} {\text{ }}$
$\therefore {\text{P }} \Rightarrow \sqrt {{5^2} - {3^2}} {\text{ = 4}}$
$\because \sin \theta = \dfrac{{{\text{Perpendicular }}}}{{{\text{hypotenuse}}}}$
$ \Rightarrow \sin \theta = \dfrac{p}{h}$
$ \Rightarrow \sin \theta = \dfrac{4}{5}$
Therefore, $\cos \theta = \dfrac{3}{5}{\text{ and sin}}\theta {\text{ = }}\dfrac{4}{5}$ .
Put the values of $\cos \theta {\text{ and sin}}\theta $ in equation $\left( 1 \right)$, we get;
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\cos \theta \cos x - \sin \theta \sin x} \right){\text{ }}......\left( 2 \right)$
We know the standard formula for ; $\cos \left( {{\text{A}} + {\text{B}}} \right) = \cos {\text{A cosB}} - \sin {\text{A}}\sin {\text{B}}$
Using the above formula in equation $\left( 1 \right)$ , we get;
$ \Rightarrow y = {\cos ^{ - 1}}\left( {\cos \left( {\theta + x} \right)} \right){\text{ }}......\left( 3 \right)$ $\left( {{\text{Here , A = }}\theta {\text{ and B = x}}} \right)$
We know that the cosine function and its inverse function cancels each other;
Therefore equation $\left( 3 \right)$, reduces to;
$ \Rightarrow y = \theta + x{\text{ }}......\left( 4 \right)$
$\because \cos \theta = \dfrac{3}{5}{\text{ }}\therefore \theta {\text{ = co}}{{\text{s}}^{ - 1}}\dfrac{3}{5}$
Now, put the value of $\theta $ , in equation $\left( 4 \right)$ we get;
$ \Rightarrow y = {\cos ^{ - 1}}\dfrac{3}{5} + x$
( $\because {\cos ^{ - 1}}\dfrac{3}{5}$ has a constant angle therefore it’s differentiation will be 0 )
Differentiating the above equation w.r.t. $x$ ;
$ \Rightarrow \dfrac{{dy}}{{dx}} = 0 + \dfrac{d}{{dx}}\left( x \right)$
$ \Rightarrow \dfrac{{dy}}{{dx}} = 1$
Therefore, the correct answer for this question is $\dfrac{{dy}}{{dx}} = 1$ .
So, the correct answer is “Option 2”.
Note: We have used the standard formula of cosine of the difference and sum of two angles, i.e.
$\left( 1 \right)\cos \left( {{\text{A}} + {\text{B}}} \right) = \cos {\text{A cosB}} - \sin {\text{A}}\sin {\text{B}}$ , this formula holds true for all values of angles of ${\text{A and B}}$ , whether positive, negative or zero. $\left( 2 \right)\cos \left( {{\text{A}} - {\text{B}}} \right) = \cos {\text{A cosB + }}\sin {\text{A}}\sin {\text{B}}$ . Similarly the formula for sine of the difference and sum of two angles is $\left( 3 \right)\sin \left( {{\text{A}} + {\text{B}}} \right) = \sin {\text{A cosB + cosA}}\sin {\text{B}}$ and $\left( 4 \right)\sin \left( {{\text{A}} - {\text{B}}} \right) = \sin {\text{A cosB}} - {\text{cosA}}\sin {\text{B}}$ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

