
\[\text{If }{{x}^{y}}={{y}^{x}},\text{ then }{{\left( \dfrac{x}{y} \right)}^{\dfrac{x}{y}}}\text{ equals}\]
(a) \[{{x}^{\dfrac{x}{y}}}\]
(b) \[{{x}^{\left( \dfrac{x}{y} \right)-1}}\]
(c) \[{{x}^{\dfrac{y}{x}}}\]
(d) \[{{x}^{\left( \dfrac{y}{x} \right)-1}}\]
Answer
605.1k+ views
Hint: First of all, consider the given equation and take log on both its sides and from that find the value of y. Now, substitute this value of y in the expression asked in the question to get the required answer.
Complete step-by-step answer:
We are given that \[{{x}^{y}}={{y}^{x}}\]. We have to find the value of \[{{\left( \dfrac{x}{y} \right)}^{\dfrac{x}{y}}}\]. Let us consider the equation given in the question.
\[{{x}^{y}}={{y}^{x}}\]
By taking log on both the sides of the above equation, we get,
\[\log {{x}^{y}}=\log {{y}^{x}}\]
We know that \[\log {{a}^{b}}=b\log a\]. By using this, we get,
\[y\log x=x\log y\]
By dividing x log x on both the sides of the equation, we get,
\[\dfrac{y\log x}{x\log x}=\dfrac{x\log y}{x\log x}\]
By canceling the like terms of the above equation, we get,
\[\dfrac{y}{x}=\dfrac{\log y}{\log x}\]
We know that \[\dfrac{\log a}{\log b}={{\log }_{b}}a\], by using this, we get,
\[{{\log }_{x}}y=\dfrac{y}{x}\]
We know that if \[{{\log }_{b}}a=t,\text{ then }a={{\left( b \right)}^{t}}\], by using this, we get,
\[y={{\left( x \right)}^{\dfrac{y}{x}}}....\left( i \right)\]
Now, let us consider the expression asked in the question.
\[E={{\left( \dfrac{x}{y} \right)}^{\dfrac{x}{y}}}\]
By substituting the value of y in the above expression from equation (i), we get,
\[E={{\left( \dfrac{x}{{{\left( x \right)}^{\dfrac{y}{x}}}} \right)}^{\dfrac{x}{y}}}\]
We know that \[{{\left( \dfrac{a}{b} \right)}^{x}}=\dfrac{{{a}^{x}}}{{{b}^{x}}}\]. By using this, we get,
\[E=\dfrac{{{x}^{\dfrac{x}{y}}}}{{{x}^{\dfrac{y}{x}.\dfrac{x}{y}}}}\]
\[E=\dfrac{{{x}^{\dfrac{x}{y}}}}{{{x}^{1}}}\]
We know that \[\dfrac{{{a}^{x}}}{{{a}^{y}}}={{a}^{x-y}}\]. By using this, we get,
\[E={{\left( x \right)}^{\dfrac{x}{y}-1}}\]
Hence, we get the value of \[{{\left( \dfrac{x}{y} \right)}^{\dfrac{x}{y}}}={{\left( x \right)}^{\dfrac{x}{y}-1}}\]
Hence, option (b) is correct.
Note: In the above question, students can find the value of y without using the log as well. That is they can raise both sides of the given equation by \[\dfrac{1}{x}\] as follows:
\[{{x}^{y}}={{y}^{x}}\]
\[{{\left( {{x}^{y}} \right)}^{\dfrac{1}{x}}}={{\left( {{y}^{x}} \right)}^{\dfrac{1}{x}}}\]
\[{{x}^{\dfrac{y}{x}}}={{y}^{\dfrac{x}{x}}}\]
\[y={{x}^{\dfrac{y}{x}}}\]
Hence, students are advised to learn both the methods to clearly and easily solve these types of questions. Also, students must see the options first and then accordingly solve the question. Like in the above question, options are given by taking base x. So, we can have also do it in that way
Complete step-by-step answer:
We are given that \[{{x}^{y}}={{y}^{x}}\]. We have to find the value of \[{{\left( \dfrac{x}{y} \right)}^{\dfrac{x}{y}}}\]. Let us consider the equation given in the question.
\[{{x}^{y}}={{y}^{x}}\]
By taking log on both the sides of the above equation, we get,
\[\log {{x}^{y}}=\log {{y}^{x}}\]
We know that \[\log {{a}^{b}}=b\log a\]. By using this, we get,
\[y\log x=x\log y\]
By dividing x log x on both the sides of the equation, we get,
\[\dfrac{y\log x}{x\log x}=\dfrac{x\log y}{x\log x}\]
By canceling the like terms of the above equation, we get,
\[\dfrac{y}{x}=\dfrac{\log y}{\log x}\]
We know that \[\dfrac{\log a}{\log b}={{\log }_{b}}a\], by using this, we get,
\[{{\log }_{x}}y=\dfrac{y}{x}\]
We know that if \[{{\log }_{b}}a=t,\text{ then }a={{\left( b \right)}^{t}}\], by using this, we get,
\[y={{\left( x \right)}^{\dfrac{y}{x}}}....\left( i \right)\]
Now, let us consider the expression asked in the question.
\[E={{\left( \dfrac{x}{y} \right)}^{\dfrac{x}{y}}}\]
By substituting the value of y in the above expression from equation (i), we get,
\[E={{\left( \dfrac{x}{{{\left( x \right)}^{\dfrac{y}{x}}}} \right)}^{\dfrac{x}{y}}}\]
We know that \[{{\left( \dfrac{a}{b} \right)}^{x}}=\dfrac{{{a}^{x}}}{{{b}^{x}}}\]. By using this, we get,
\[E=\dfrac{{{x}^{\dfrac{x}{y}}}}{{{x}^{\dfrac{y}{x}.\dfrac{x}{y}}}}\]
\[E=\dfrac{{{x}^{\dfrac{x}{y}}}}{{{x}^{1}}}\]
We know that \[\dfrac{{{a}^{x}}}{{{a}^{y}}}={{a}^{x-y}}\]. By using this, we get,
\[E={{\left( x \right)}^{\dfrac{x}{y}-1}}\]
Hence, we get the value of \[{{\left( \dfrac{x}{y} \right)}^{\dfrac{x}{y}}}={{\left( x \right)}^{\dfrac{x}{y}-1}}\]
Hence, option (b) is correct.
Note: In the above question, students can find the value of y without using the log as well. That is they can raise both sides of the given equation by \[\dfrac{1}{x}\] as follows:
\[{{x}^{y}}={{y}^{x}}\]
\[{{\left( {{x}^{y}} \right)}^{\dfrac{1}{x}}}={{\left( {{y}^{x}} \right)}^{\dfrac{1}{x}}}\]
\[{{x}^{\dfrac{y}{x}}}={{y}^{\dfrac{x}{x}}}\]
\[y={{x}^{\dfrac{y}{x}}}\]
Hence, students are advised to learn both the methods to clearly and easily solve these types of questions. Also, students must see the options first and then accordingly solve the question. Like in the above question, options are given by taking base x. So, we can have also do it in that way
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

