
If \[{{x}^{y}}={{y}^{x}}\] , then find the value of \[\dfrac{dy}{dx}\] .
Answer
586.2k+ views
Hint: First of all, take \[\log \] in LHS and RHS of the expression, \[{{x}^{y}}={{y}^{x}}\] . Now, simplify the expression by using the formula, \[\log {{a}^{b}}=b\log a\] . Differentiate the simplified expression with respect to x using the formula, \[\dfrac{d\left( uv \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\] . We know the formula, \[\dfrac{d\left( \log x \right)}{dx}=\dfrac{1}{x}\] . Now, use this formula, to simplify the equation, \[y\dfrac{d\left( \log x \right)}{dx}+\log x\dfrac{dy}{dx}=x\dfrac{d\left( \log y \right)}{dx}+\log y\dfrac{dx}{dx}\] . Then, use chain rule to simplify \[\dfrac{d\left( \log y \right)}{dx}\] . Now, solve it further and get the value of \[\dfrac{dy}{dx}\] .
Complete step by step answer:
According to the question, it is given that the expression is
\[{{x}^{y}}={{y}^{x}}\] ……………………………………..(1)
Now, on taking \[\log \] in LHS and RHS of equation (1), we get
\[\Rightarrow \log {{x}^{y}}=\log {{y}^{x}}\] ………………………………………(2)
We know the formula, \[\log {{a}^{b}}=b\log a\] ………………………………………(3)
Now, from equation (2) and equation (3), we get
\[\Rightarrow \log {{x}^{y}}=\log {{y}^{x}}\]
\[\Rightarrow y\log x=x\log y\] ……………………………………….(4)
Now, on differentiating with respect to x in equation (4), we get
\[\Rightarrow \dfrac{d\left( y\log x \right)}{dx}=\dfrac{d\left( x\log y \right)}{dx}\] ……………………………………………(5)
We know the formula, \[\dfrac{d\left( uv \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\] ………………………………………………(6)
Now, on applying the formula shown in equation (6) to simplify equation (5), we get
\[\Rightarrow y\dfrac{d\left( \log x \right)}{dx}+\log x\dfrac{dy}{dx}=x\dfrac{d\left( \log y \right)}{dx}+\log y\dfrac{dx}{dx}\] …………………………………………..(7)
We know the formula, \[\dfrac{d\left( \log x \right)}{dx}=\dfrac{1}{x}\] ……………………………………………………(8)
\[\Rightarrow y.\dfrac{1}{x}+\log x\dfrac{dy}{dx}=x\dfrac{d\left( \log y \right)}{dx}+\log y.1\] ……………………………………….(9)
Now, using chain rule, we can write, \[\dfrac{d\left( \log y \right)}{dx}=\dfrac{d\left( \log y \right)}{dy}\times \dfrac{dy}{dx}\] ………………………………………..(10)
Using equation (10) and transforming equation (9), we get
\[\Rightarrow \dfrac{y}{x}+\log x\dfrac{dy}{dx}=x\dfrac{d\left( \log y \right)}{dy}\times \dfrac{dy}{dx}+\log y\] ………………………………………..(11)
Now, on replacing x by y in equation (8), we get
\[\dfrac{d\left( \log y \right)}{dy}=\dfrac{1}{x}\] …………………………………………….(12)
Using equation (12) for simplifying equation (11), we get
\[\begin{align}
& \Rightarrow \dfrac{y}{x}+\log x\dfrac{dy}{dx}=x.\dfrac{1}{y}\times \dfrac{dy}{dx}+\log y \\
& \Rightarrow \dfrac{y}{x}+\log x\dfrac{dy}{dx}=\dfrac{x}{y}\dfrac{dy}{dx}+\log y \\
\end{align}\]
Now, on shifting the \[\log \] terms to the LHS and remaining terms to RHS, we get
\[\Rightarrow \log x\dfrac{dy}{dx}-\dfrac{x}{y}\dfrac{dy}{dx}=\log y-\dfrac{y}{x}\]
\[\Rightarrow \dfrac{dy}{dx}\left( \log x-\dfrac{x}{y} \right)=\left( \log y-\dfrac{y}{x} \right)\] …………………………………….(13)
Now, on dividing by the term \[\left( \log x-\dfrac{x}{y} \right)\] in LHS and RHS of equation (13), we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{\left( \log y-\dfrac{y}{x} \right)}{\left( \log x-\dfrac{x}{y} \right)}\] ……………………………………(14)
On simplifying equation (14), we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{\left( \dfrac{x\log y-y}{x} \right)}{\left( \dfrac{y\log x-x}{y} \right)} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{y}{x}\left( \dfrac{x\log y-y}{y\log x-x} \right) \\
\end{align}\]
Therefore, the value of \[\dfrac{dy}{dx}\] for the expression \[{{x}^{y}}={{y}^{x}}\] is equal to \[\dfrac{y}{x}\left( \dfrac{x\log y-y}{y\log x-x} \right)\] .
Note:
In this question, one might do a silly while differentiating the term \[\log y\] with respect to x, that is, \[\dfrac{d\left( \log y \right)}{dx}\] . One might use the formula, \[\dfrac{d\left( \log x \right)}{dx}=\dfrac{1}{x}\] and write it as \[\dfrac{1}{y}\] . This is wrong because here, we can’t use the formula \[\dfrac{d\left( \log x \right)}{dx}=\dfrac{1}{x}\] directly. For using this formula, we must have the same variable in term in numerator and denominator as well. But here, differentiating the term \[\log y\] with respect to x, that is, \[\dfrac{d\left( \log y \right)}{dx}\] , we don’t have same variable in numerator and denominator. Therefore, first transform the term \[\dfrac{d\left( \log y \right)}{dx}\] using the chain rule as \[\dfrac{d\left( \log y \right)}{dy}\times \dfrac{dy}{dx}\] .
Complete step by step answer:
According to the question, it is given that the expression is
\[{{x}^{y}}={{y}^{x}}\] ……………………………………..(1)
Now, on taking \[\log \] in LHS and RHS of equation (1), we get
\[\Rightarrow \log {{x}^{y}}=\log {{y}^{x}}\] ………………………………………(2)
We know the formula, \[\log {{a}^{b}}=b\log a\] ………………………………………(3)
Now, from equation (2) and equation (3), we get
\[\Rightarrow \log {{x}^{y}}=\log {{y}^{x}}\]
\[\Rightarrow y\log x=x\log y\] ……………………………………….(4)
Now, on differentiating with respect to x in equation (4), we get
\[\Rightarrow \dfrac{d\left( y\log x \right)}{dx}=\dfrac{d\left( x\log y \right)}{dx}\] ……………………………………………(5)
We know the formula, \[\dfrac{d\left( uv \right)}{dx}=u\dfrac{dv}{dx}+v\dfrac{du}{dx}\] ………………………………………………(6)
Now, on applying the formula shown in equation (6) to simplify equation (5), we get
\[\Rightarrow y\dfrac{d\left( \log x \right)}{dx}+\log x\dfrac{dy}{dx}=x\dfrac{d\left( \log y \right)}{dx}+\log y\dfrac{dx}{dx}\] …………………………………………..(7)
We know the formula, \[\dfrac{d\left( \log x \right)}{dx}=\dfrac{1}{x}\] ……………………………………………………(8)
\[\Rightarrow y.\dfrac{1}{x}+\log x\dfrac{dy}{dx}=x\dfrac{d\left( \log y \right)}{dx}+\log y.1\] ……………………………………….(9)
Now, using chain rule, we can write, \[\dfrac{d\left( \log y \right)}{dx}=\dfrac{d\left( \log y \right)}{dy}\times \dfrac{dy}{dx}\] ………………………………………..(10)
Using equation (10) and transforming equation (9), we get
\[\Rightarrow \dfrac{y}{x}+\log x\dfrac{dy}{dx}=x\dfrac{d\left( \log y \right)}{dy}\times \dfrac{dy}{dx}+\log y\] ………………………………………..(11)
Now, on replacing x by y in equation (8), we get
\[\dfrac{d\left( \log y \right)}{dy}=\dfrac{1}{x}\] …………………………………………….(12)
Using equation (12) for simplifying equation (11), we get
\[\begin{align}
& \Rightarrow \dfrac{y}{x}+\log x\dfrac{dy}{dx}=x.\dfrac{1}{y}\times \dfrac{dy}{dx}+\log y \\
& \Rightarrow \dfrac{y}{x}+\log x\dfrac{dy}{dx}=\dfrac{x}{y}\dfrac{dy}{dx}+\log y \\
\end{align}\]
Now, on shifting the \[\log \] terms to the LHS and remaining terms to RHS, we get
\[\Rightarrow \log x\dfrac{dy}{dx}-\dfrac{x}{y}\dfrac{dy}{dx}=\log y-\dfrac{y}{x}\]
\[\Rightarrow \dfrac{dy}{dx}\left( \log x-\dfrac{x}{y} \right)=\left( \log y-\dfrac{y}{x} \right)\] …………………………………….(13)
Now, on dividing by the term \[\left( \log x-\dfrac{x}{y} \right)\] in LHS and RHS of equation (13), we get
\[\Rightarrow \dfrac{dy}{dx}=\dfrac{\left( \log y-\dfrac{y}{x} \right)}{\left( \log x-\dfrac{x}{y} \right)}\] ……………………………………(14)
On simplifying equation (14), we get
\[\begin{align}
& \Rightarrow \dfrac{dy}{dx}=\dfrac{\left( \dfrac{x\log y-y}{x} \right)}{\left( \dfrac{y\log x-x}{y} \right)} \\
& \Rightarrow \dfrac{dy}{dx}=\dfrac{y}{x}\left( \dfrac{x\log y-y}{y\log x-x} \right) \\
\end{align}\]
Therefore, the value of \[\dfrac{dy}{dx}\] for the expression \[{{x}^{y}}={{y}^{x}}\] is equal to \[\dfrac{y}{x}\left( \dfrac{x\log y-y}{y\log x-x} \right)\] .
Note:
In this question, one might do a silly while differentiating the term \[\log y\] with respect to x, that is, \[\dfrac{d\left( \log y \right)}{dx}\] . One might use the formula, \[\dfrac{d\left( \log x \right)}{dx}=\dfrac{1}{x}\] and write it as \[\dfrac{1}{y}\] . This is wrong because here, we can’t use the formula \[\dfrac{d\left( \log x \right)}{dx}=\dfrac{1}{x}\] directly. For using this formula, we must have the same variable in term in numerator and denominator as well. But here, differentiating the term \[\log y\] with respect to x, that is, \[\dfrac{d\left( \log y \right)}{dx}\] , we don’t have same variable in numerator and denominator. Therefore, first transform the term \[\dfrac{d\left( \log y \right)}{dx}\] using the chain rule as \[\dfrac{d\left( \log y \right)}{dy}\times \dfrac{dy}{dx}\] .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

