
If ${X^Y} + {Y^X} = {a^b}$ , then find $\dfrac{{dy}}{{dx}}$ .
Answer
570.3k+ views
Hint: In this question we have to find out $\dfrac{{dy}}{{dx}}$ so, firstly we have to change these exponential terms into easier form so that it can be easily differentiated. So, use the log function to convert it into an easy format and differentiate with the following chain rule of differentiation.
Complete step-by-step solution:
Given: ${X^Y} + {Y^X} = {a^b}$ , then find $\dfrac{{dy}}{{dx}}$ .
In this question differentiation rules will be followed, so when we differentiate some terms with respect to $dx$ then chain rule will be followed.
So, $\because {X^Y} + {Y^X} = {a^b}$
Now, differentiate both sides with the help of $dx$
$\therefore \dfrac{{d\left( {{X^Y} + {Y^X}} \right)}}{{dx}} = \dfrac{{d{a^b}}}{{dx}}$
$ \Rightarrow \dfrac{d}{{dx}}({X^Y}) + \dfrac{d}{{dx}}({Y^X}) = 0$
Let ${X^Y} = A$ and ${Y^X} = B$
Applying both sides log function:
$\therefore Y\log X = \log A$ and $X\log Y = \log B.$
Now, differentiate both sides with respect to $dx$ , we have
$
\Rightarrow Y\dfrac{{d\log X}}{{dx}} + \log X\dfrac{{dy}}{{dx}} = \dfrac{{d\log A}}{{dx}} \times \dfrac{{dA}}{{dx}} \\
\Rightarrow \dfrac{Y}{X} + \operatorname{l} ogX\dfrac{{dy}}{{dx}} = \dfrac{1}{A} \times \dfrac{{dA}}{{dx}} \\
\Rightarrow \dfrac{{dA}}{{dx}} = A\left( {\dfrac{Y}{X} + \log X\dfrac{{dy}}{{dx}}} \right) \\
\therefore \dfrac{{dA}}{{dx}} = A\left( {\dfrac{Y}{X} + \log X\dfrac{{dy}}{{dx}}} \right) \to (1) \\
$
Now, $\because \log B = X\log Y$
$
\Rightarrow \dfrac{{d\log B}}{{dB}} \times \dfrac{{dB}}{{dx}} = X\dfrac{{d\log Y}}{{dy}} \times \dfrac{{dy}}{{dx}} + \log Y\dfrac{{dx}}{{dx}} \\
\Rightarrow \dfrac{1}{B} \times \dfrac{{dB}}{{dx}} = \dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y \\
\therefore \dfrac{{dB}}{{dx}} = B\left( {\dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y} \right) \to (2) \\
$
Now, adding equation (1) and equation (2)
$
\because \dfrac{{dA}}{{dx}} + \dfrac{{dB}}{{dx}} \Rightarrow \dfrac{d}{{dx}}({X^Y}) + \dfrac{d}{{dx}}({Y^X}) = 0 \\
\Rightarrow \dfrac{{d{X^Y}}}{{dx}} + \dfrac{d}{{dx}}({Y^X}) \Rightarrow A\left( {\dfrac{y}{x} + \log X\dfrac{{dy}}{{dx}}} \right) + B\left( {\dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y} \right) = 0 \\
$
Now, putting the value of $A$ and $B$
$
\because {X^Y}\left( {\dfrac{y}{x} + \log X\dfrac{{dy}}{{dx}}} \right) + {Y^x}\left( {\dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y} \right) = 0 \\
\Rightarrow Y{X^{Y - 1}} + \dfrac{{dy}}{{dx}}\left( {{X^Y}\log X + X{Y^{X - 1}}} \right) + {Y^X}\log Y = 0 \\ $
$ \therefore \dfrac{{dy}}{{dx}} = - \dfrac{{\left( {{Y^X}\log Y + Y{X^{Y - 1}}} \right)}}{{\left( {{X^Y}\log X + X{Y^{X - 1}}} \right)}} $
Hence, the value of $\dfrac{{dy}}{{dx}}$
$\dfrac{{dy}}{{dx}} = - \dfrac{{\left( {{Y^X}\log Y + Y{X^{Y - 1}}} \right)}}{{\left( {{X^Y}\log X + X{Y^{X - 1}}} \right)}}$
Note: In the question exponential terms must be changed into logarithmic terms. It will help to find out the value of $\dfrac{{dy}}{{dx}}$ easily and one more thing students should always use proper differentiation with the help of chain rule otherwise the answer will be wrong.
Complete step-by-step solution:
Given: ${X^Y} + {Y^X} = {a^b}$ , then find $\dfrac{{dy}}{{dx}}$ .
In this question differentiation rules will be followed, so when we differentiate some terms with respect to $dx$ then chain rule will be followed.
So, $\because {X^Y} + {Y^X} = {a^b}$
Now, differentiate both sides with the help of $dx$
$\therefore \dfrac{{d\left( {{X^Y} + {Y^X}} \right)}}{{dx}} = \dfrac{{d{a^b}}}{{dx}}$
$ \Rightarrow \dfrac{d}{{dx}}({X^Y}) + \dfrac{d}{{dx}}({Y^X}) = 0$
Let ${X^Y} = A$ and ${Y^X} = B$
Applying both sides log function:
$\therefore Y\log X = \log A$ and $X\log Y = \log B.$
Now, differentiate both sides with respect to $dx$ , we have
$
\Rightarrow Y\dfrac{{d\log X}}{{dx}} + \log X\dfrac{{dy}}{{dx}} = \dfrac{{d\log A}}{{dx}} \times \dfrac{{dA}}{{dx}} \\
\Rightarrow \dfrac{Y}{X} + \operatorname{l} ogX\dfrac{{dy}}{{dx}} = \dfrac{1}{A} \times \dfrac{{dA}}{{dx}} \\
\Rightarrow \dfrac{{dA}}{{dx}} = A\left( {\dfrac{Y}{X} + \log X\dfrac{{dy}}{{dx}}} \right) \\
\therefore \dfrac{{dA}}{{dx}} = A\left( {\dfrac{Y}{X} + \log X\dfrac{{dy}}{{dx}}} \right) \to (1) \\
$
Now, $\because \log B = X\log Y$
$
\Rightarrow \dfrac{{d\log B}}{{dB}} \times \dfrac{{dB}}{{dx}} = X\dfrac{{d\log Y}}{{dy}} \times \dfrac{{dy}}{{dx}} + \log Y\dfrac{{dx}}{{dx}} \\
\Rightarrow \dfrac{1}{B} \times \dfrac{{dB}}{{dx}} = \dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y \\
\therefore \dfrac{{dB}}{{dx}} = B\left( {\dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y} \right) \to (2) \\
$
Now, adding equation (1) and equation (2)
$
\because \dfrac{{dA}}{{dx}} + \dfrac{{dB}}{{dx}} \Rightarrow \dfrac{d}{{dx}}({X^Y}) + \dfrac{d}{{dx}}({Y^X}) = 0 \\
\Rightarrow \dfrac{{d{X^Y}}}{{dx}} + \dfrac{d}{{dx}}({Y^X}) \Rightarrow A\left( {\dfrac{y}{x} + \log X\dfrac{{dy}}{{dx}}} \right) + B\left( {\dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y} \right) = 0 \\
$
Now, putting the value of $A$ and $B$
$
\because {X^Y}\left( {\dfrac{y}{x} + \log X\dfrac{{dy}}{{dx}}} \right) + {Y^x}\left( {\dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y} \right) = 0 \\
\Rightarrow Y{X^{Y - 1}} + \dfrac{{dy}}{{dx}}\left( {{X^Y}\log X + X{Y^{X - 1}}} \right) + {Y^X}\log Y = 0 \\ $
$ \therefore \dfrac{{dy}}{{dx}} = - \dfrac{{\left( {{Y^X}\log Y + Y{X^{Y - 1}}} \right)}}{{\left( {{X^Y}\log X + X{Y^{X - 1}}} \right)}} $
Hence, the value of $\dfrac{{dy}}{{dx}}$
$\dfrac{{dy}}{{dx}} = - \dfrac{{\left( {{Y^X}\log Y + Y{X^{Y - 1}}} \right)}}{{\left( {{X^Y}\log X + X{Y^{X - 1}}} \right)}}$
Note: In the question exponential terms must be changed into logarithmic terms. It will help to find out the value of $\dfrac{{dy}}{{dx}}$ easily and one more thing students should always use proper differentiation with the help of chain rule otherwise the answer will be wrong.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

