
If ${X^Y} + {Y^X} = {a^b}$ , then find $\dfrac{{dy}}{{dx}}$ .
Answer
585.9k+ views
Hint: In this question we have to find out $\dfrac{{dy}}{{dx}}$ so, firstly we have to change these exponential terms into easier form so that it can be easily differentiated. So, use the log function to convert it into an easy format and differentiate with the following chain rule of differentiation.
Complete step-by-step solution:
Given: ${X^Y} + {Y^X} = {a^b}$ , then find $\dfrac{{dy}}{{dx}}$ .
In this question differentiation rules will be followed, so when we differentiate some terms with respect to $dx$ then chain rule will be followed.
So, $\because {X^Y} + {Y^X} = {a^b}$
Now, differentiate both sides with the help of $dx$
$\therefore \dfrac{{d\left( {{X^Y} + {Y^X}} \right)}}{{dx}} = \dfrac{{d{a^b}}}{{dx}}$
$ \Rightarrow \dfrac{d}{{dx}}({X^Y}) + \dfrac{d}{{dx}}({Y^X}) = 0$
Let ${X^Y} = A$ and ${Y^X} = B$
Applying both sides log function:
$\therefore Y\log X = \log A$ and $X\log Y = \log B.$
Now, differentiate both sides with respect to $dx$ , we have
$
\Rightarrow Y\dfrac{{d\log X}}{{dx}} + \log X\dfrac{{dy}}{{dx}} = \dfrac{{d\log A}}{{dx}} \times \dfrac{{dA}}{{dx}} \\
\Rightarrow \dfrac{Y}{X} + \operatorname{l} ogX\dfrac{{dy}}{{dx}} = \dfrac{1}{A} \times \dfrac{{dA}}{{dx}} \\
\Rightarrow \dfrac{{dA}}{{dx}} = A\left( {\dfrac{Y}{X} + \log X\dfrac{{dy}}{{dx}}} \right) \\
\therefore \dfrac{{dA}}{{dx}} = A\left( {\dfrac{Y}{X} + \log X\dfrac{{dy}}{{dx}}} \right) \to (1) \\
$
Now, $\because \log B = X\log Y$
$
\Rightarrow \dfrac{{d\log B}}{{dB}} \times \dfrac{{dB}}{{dx}} = X\dfrac{{d\log Y}}{{dy}} \times \dfrac{{dy}}{{dx}} + \log Y\dfrac{{dx}}{{dx}} \\
\Rightarrow \dfrac{1}{B} \times \dfrac{{dB}}{{dx}} = \dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y \\
\therefore \dfrac{{dB}}{{dx}} = B\left( {\dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y} \right) \to (2) \\
$
Now, adding equation (1) and equation (2)
$
\because \dfrac{{dA}}{{dx}} + \dfrac{{dB}}{{dx}} \Rightarrow \dfrac{d}{{dx}}({X^Y}) + \dfrac{d}{{dx}}({Y^X}) = 0 \\
\Rightarrow \dfrac{{d{X^Y}}}{{dx}} + \dfrac{d}{{dx}}({Y^X}) \Rightarrow A\left( {\dfrac{y}{x} + \log X\dfrac{{dy}}{{dx}}} \right) + B\left( {\dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y} \right) = 0 \\
$
Now, putting the value of $A$ and $B$
$
\because {X^Y}\left( {\dfrac{y}{x} + \log X\dfrac{{dy}}{{dx}}} \right) + {Y^x}\left( {\dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y} \right) = 0 \\
\Rightarrow Y{X^{Y - 1}} + \dfrac{{dy}}{{dx}}\left( {{X^Y}\log X + X{Y^{X - 1}}} \right) + {Y^X}\log Y = 0 \\ $
$ \therefore \dfrac{{dy}}{{dx}} = - \dfrac{{\left( {{Y^X}\log Y + Y{X^{Y - 1}}} \right)}}{{\left( {{X^Y}\log X + X{Y^{X - 1}}} \right)}} $
Hence, the value of $\dfrac{{dy}}{{dx}}$
$\dfrac{{dy}}{{dx}} = - \dfrac{{\left( {{Y^X}\log Y + Y{X^{Y - 1}}} \right)}}{{\left( {{X^Y}\log X + X{Y^{X - 1}}} \right)}}$
Note: In the question exponential terms must be changed into logarithmic terms. It will help to find out the value of $\dfrac{{dy}}{{dx}}$ easily and one more thing students should always use proper differentiation with the help of chain rule otherwise the answer will be wrong.
Complete step-by-step solution:
Given: ${X^Y} + {Y^X} = {a^b}$ , then find $\dfrac{{dy}}{{dx}}$ .
In this question differentiation rules will be followed, so when we differentiate some terms with respect to $dx$ then chain rule will be followed.
So, $\because {X^Y} + {Y^X} = {a^b}$
Now, differentiate both sides with the help of $dx$
$\therefore \dfrac{{d\left( {{X^Y} + {Y^X}} \right)}}{{dx}} = \dfrac{{d{a^b}}}{{dx}}$
$ \Rightarrow \dfrac{d}{{dx}}({X^Y}) + \dfrac{d}{{dx}}({Y^X}) = 0$
Let ${X^Y} = A$ and ${Y^X} = B$
Applying both sides log function:
$\therefore Y\log X = \log A$ and $X\log Y = \log B.$
Now, differentiate both sides with respect to $dx$ , we have
$
\Rightarrow Y\dfrac{{d\log X}}{{dx}} + \log X\dfrac{{dy}}{{dx}} = \dfrac{{d\log A}}{{dx}} \times \dfrac{{dA}}{{dx}} \\
\Rightarrow \dfrac{Y}{X} + \operatorname{l} ogX\dfrac{{dy}}{{dx}} = \dfrac{1}{A} \times \dfrac{{dA}}{{dx}} \\
\Rightarrow \dfrac{{dA}}{{dx}} = A\left( {\dfrac{Y}{X} + \log X\dfrac{{dy}}{{dx}}} \right) \\
\therefore \dfrac{{dA}}{{dx}} = A\left( {\dfrac{Y}{X} + \log X\dfrac{{dy}}{{dx}}} \right) \to (1) \\
$
Now, $\because \log B = X\log Y$
$
\Rightarrow \dfrac{{d\log B}}{{dB}} \times \dfrac{{dB}}{{dx}} = X\dfrac{{d\log Y}}{{dy}} \times \dfrac{{dy}}{{dx}} + \log Y\dfrac{{dx}}{{dx}} \\
\Rightarrow \dfrac{1}{B} \times \dfrac{{dB}}{{dx}} = \dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y \\
\therefore \dfrac{{dB}}{{dx}} = B\left( {\dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y} \right) \to (2) \\
$
Now, adding equation (1) and equation (2)
$
\because \dfrac{{dA}}{{dx}} + \dfrac{{dB}}{{dx}} \Rightarrow \dfrac{d}{{dx}}({X^Y}) + \dfrac{d}{{dx}}({Y^X}) = 0 \\
\Rightarrow \dfrac{{d{X^Y}}}{{dx}} + \dfrac{d}{{dx}}({Y^X}) \Rightarrow A\left( {\dfrac{y}{x} + \log X\dfrac{{dy}}{{dx}}} \right) + B\left( {\dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y} \right) = 0 \\
$
Now, putting the value of $A$ and $B$
$
\because {X^Y}\left( {\dfrac{y}{x} + \log X\dfrac{{dy}}{{dx}}} \right) + {Y^x}\left( {\dfrac{x}{y} \times \dfrac{{dy}}{{dx}} + \log Y} \right) = 0 \\
\Rightarrow Y{X^{Y - 1}} + \dfrac{{dy}}{{dx}}\left( {{X^Y}\log X + X{Y^{X - 1}}} \right) + {Y^X}\log Y = 0 \\ $
$ \therefore \dfrac{{dy}}{{dx}} = - \dfrac{{\left( {{Y^X}\log Y + Y{X^{Y - 1}}} \right)}}{{\left( {{X^Y}\log X + X{Y^{X - 1}}} \right)}} $
Hence, the value of $\dfrac{{dy}}{{dx}}$
$\dfrac{{dy}}{{dx}} = - \dfrac{{\left( {{Y^X}\log Y + Y{X^{Y - 1}}} \right)}}{{\left( {{X^Y}\log X + X{Y^{X - 1}}} \right)}}$
Note: In the question exponential terms must be changed into logarithmic terms. It will help to find out the value of $\dfrac{{dy}}{{dx}}$ easily and one more thing students should always use proper differentiation with the help of chain rule otherwise the answer will be wrong.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

