
If \[X=n\pi -{{\tan }^{-1}}(3)\] is a solution of the equation \[12\tan 2x+\dfrac{\sqrt{10}}{\cos x}+1=0\] if
\[\begin{align}
& (\text{A) n is any integer} \\
& \text{(B) n is odd integer} \\
& \text{(C) n is a positive integer} \\
& \text{(D) n}\in \text{2M,M}\in \text{I} \\
\end{align}\]
Answer
571.2k+ views
Hint: Let us assume \[X=n\pi -{{\tan }^{-1}}(3)\] as equation (1). Now let’s assume \[12\tan 2x+\dfrac{\sqrt{10}}{\cos x}+1=0\] as equation (2). Now we will substitute equation (1) and equation (2). Now we have to assume two cases and we have to proceed further. Let us assume n is even as Case-1. We know that if n is even , then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=\cos x\]. So, by using these relations we will find whether the condition is satisfied or not. Let us assume n is odd as Case-2. We know that if n is odd, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=-\cos x\].So, by using these relations, we will find whether the condition is satisfied or not.
Complete step-by-step answer:
Now let us assume
\[X=n\pi -{{\tan }^{-1}}(3)......(1)\]
\[12\tan 2x+\dfrac{\sqrt{10}}{\cos x}+1=0.......(2)\]
Now let us substitute equation (1) in equation (2).
\[12\tan 2(n\pi -{{\tan }^{-1}}(3))+\dfrac{\sqrt{10}}{\cos \left( n\pi -{{\tan }^{-1}}(3) \right)}+1=0\]
Case-1: Let us assume n is an even integer.
If n is even, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=\cos x\].
So, by using above relations, we get
\[\Rightarrow -12(\tan (2{{\tan }^{-1}}(3)))+\dfrac{\sqrt{10}}{\cos \left( {{\tan }^{-1}}(3) \right)}+1=0\]
We know that \[2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\] and \[{{\tan }^{-1}}\dfrac{a}{b}={{\cos }^{-1}}\dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\] , here we have a=3, b=1.
\[\begin{align}
& \Rightarrow -12Tan\left( Ta{{n}^{-1}}\left( \dfrac{2(3)}{1-{{(3)}^{2}}} \right) \right)+\dfrac{\sqrt{10}}{\cos \left( {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{10}} \right) \right)}+1=0 \\
& \Rightarrow -12Tan\left( Ta{{n}^{-1}}\left( \dfrac{-3}{4} \right) \right)+\dfrac{\sqrt{10}}{\left( \dfrac{1}{\sqrt{10}} \right)}+1=0 \\
& \Rightarrow (-12)\left( \dfrac{-3}{4} \right)+10+1=0 \\
& \Rightarrow 20=0 \\
\end{align}\]
But this is never possible. So, we cannot say that n is even.
Case 2: Let us assume n is an odd integer.
If n is odd, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=-\cos x\].
So, by using above relations, we get
\[\Rightarrow -12(\tan (2{{\tan }^{-1}}(3)))-\dfrac{\sqrt{10}}{\cos \left( {{\tan }^{-1}}(3) \right)}+1=0\]
We know that \[2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\] and \[{{\tan }^{-1}}\dfrac{a}{b}={{\cos }^{-1}}\dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\] , here we have a=3, b=1.
\[\begin{align}
& \Rightarrow -12Tan\left( Ta{{n}^{-1}}\left( \dfrac{2(3)}{1-{{(3)}^{2}}} \right) \right)-\dfrac{\sqrt{10}}{\cos \left( {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{10}} \right) \right)}+1=0 \\
& \Rightarrow -12Tan\left( Ta{{n}^{-1}}\left( \dfrac{-3}{4} \right) \right)-\dfrac{\sqrt{10}}{\left( \dfrac{1}{\sqrt{10}} \right)}+1=0 \\
& \Rightarrow (-12)\left( \dfrac{-3}{4} \right)-10+1=0 \\
& \Rightarrow 0=0 \\
\end{align}\]
So, we can say that n is odd.
So, the correct answer is “Option B”.
Note: While solving this problem, we should not have any misconceptions. We should remember that if n is odd, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=-\cos x\], If n is even, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=\cos x\]. But some students will have a misconception that if n is even, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=-\cos x\], If n is odd, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=\cos x\]. This will give us option D as correct. So, we should be careful while applying this concept.
Complete step-by-step answer:
Now let us assume
\[X=n\pi -{{\tan }^{-1}}(3)......(1)\]
\[12\tan 2x+\dfrac{\sqrt{10}}{\cos x}+1=0.......(2)\]
Now let us substitute equation (1) in equation (2).
\[12\tan 2(n\pi -{{\tan }^{-1}}(3))+\dfrac{\sqrt{10}}{\cos \left( n\pi -{{\tan }^{-1}}(3) \right)}+1=0\]
Case-1: Let us assume n is an even integer.
If n is even, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=\cos x\].
So, by using above relations, we get
\[\Rightarrow -12(\tan (2{{\tan }^{-1}}(3)))+\dfrac{\sqrt{10}}{\cos \left( {{\tan }^{-1}}(3) \right)}+1=0\]
We know that \[2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\] and \[{{\tan }^{-1}}\dfrac{a}{b}={{\cos }^{-1}}\dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\] , here we have a=3, b=1.
\[\begin{align}
& \Rightarrow -12Tan\left( Ta{{n}^{-1}}\left( \dfrac{2(3)}{1-{{(3)}^{2}}} \right) \right)+\dfrac{\sqrt{10}}{\cos \left( {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{10}} \right) \right)}+1=0 \\
& \Rightarrow -12Tan\left( Ta{{n}^{-1}}\left( \dfrac{-3}{4} \right) \right)+\dfrac{\sqrt{10}}{\left( \dfrac{1}{\sqrt{10}} \right)}+1=0 \\
& \Rightarrow (-12)\left( \dfrac{-3}{4} \right)+10+1=0 \\
& \Rightarrow 20=0 \\
\end{align}\]
But this is never possible. So, we cannot say that n is even.
Case 2: Let us assume n is an odd integer.
If n is odd, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=-\cos x\].
So, by using above relations, we get
\[\Rightarrow -12(\tan (2{{\tan }^{-1}}(3)))-\dfrac{\sqrt{10}}{\cos \left( {{\tan }^{-1}}(3) \right)}+1=0\]
We know that \[2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\] and \[{{\tan }^{-1}}\dfrac{a}{b}={{\cos }^{-1}}\dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\] , here we have a=3, b=1.
\[\begin{align}
& \Rightarrow -12Tan\left( Ta{{n}^{-1}}\left( \dfrac{2(3)}{1-{{(3)}^{2}}} \right) \right)-\dfrac{\sqrt{10}}{\cos \left( {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{10}} \right) \right)}+1=0 \\
& \Rightarrow -12Tan\left( Ta{{n}^{-1}}\left( \dfrac{-3}{4} \right) \right)-\dfrac{\sqrt{10}}{\left( \dfrac{1}{\sqrt{10}} \right)}+1=0 \\
& \Rightarrow (-12)\left( \dfrac{-3}{4} \right)-10+1=0 \\
& \Rightarrow 0=0 \\
\end{align}\]
So, we can say that n is odd.
So, the correct answer is “Option B”.
Note: While solving this problem, we should not have any misconceptions. We should remember that if n is odd, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=-\cos x\], If n is even, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=\cos x\]. But some students will have a misconception that if n is even, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=-\cos x\], If n is odd, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=\cos x\]. This will give us option D as correct. So, we should be careful while applying this concept.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

