
If \[X=n\pi -{{\tan }^{-1}}(3)\] is a solution of the equation \[12\tan 2x+\dfrac{\sqrt{10}}{\cos x}+1=0\] if
\[\begin{align}
& (\text{A) n is any integer} \\
& \text{(B) n is odd integer} \\
& \text{(C) n is a positive integer} \\
& \text{(D) n}\in \text{2M,M}\in \text{I} \\
\end{align}\]
Answer
585.3k+ views
Hint: Let us assume \[X=n\pi -{{\tan }^{-1}}(3)\] as equation (1). Now let’s assume \[12\tan 2x+\dfrac{\sqrt{10}}{\cos x}+1=0\] as equation (2). Now we will substitute equation (1) and equation (2). Now we have to assume two cases and we have to proceed further. Let us assume n is even as Case-1. We know that if n is even , then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=\cos x\]. So, by using these relations we will find whether the condition is satisfied or not. Let us assume n is odd as Case-2. We know that if n is odd, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=-\cos x\].So, by using these relations, we will find whether the condition is satisfied or not.
Complete step-by-step answer:
Now let us assume
\[X=n\pi -{{\tan }^{-1}}(3)......(1)\]
\[12\tan 2x+\dfrac{\sqrt{10}}{\cos x}+1=0.......(2)\]
Now let us substitute equation (1) in equation (2).
\[12\tan 2(n\pi -{{\tan }^{-1}}(3))+\dfrac{\sqrt{10}}{\cos \left( n\pi -{{\tan }^{-1}}(3) \right)}+1=0\]
Case-1: Let us assume n is an even integer.
If n is even, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=\cos x\].
So, by using above relations, we get
\[\Rightarrow -12(\tan (2{{\tan }^{-1}}(3)))+\dfrac{\sqrt{10}}{\cos \left( {{\tan }^{-1}}(3) \right)}+1=0\]
We know that \[2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\] and \[{{\tan }^{-1}}\dfrac{a}{b}={{\cos }^{-1}}\dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\] , here we have a=3, b=1.
\[\begin{align}
& \Rightarrow -12Tan\left( Ta{{n}^{-1}}\left( \dfrac{2(3)}{1-{{(3)}^{2}}} \right) \right)+\dfrac{\sqrt{10}}{\cos \left( {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{10}} \right) \right)}+1=0 \\
& \Rightarrow -12Tan\left( Ta{{n}^{-1}}\left( \dfrac{-3}{4} \right) \right)+\dfrac{\sqrt{10}}{\left( \dfrac{1}{\sqrt{10}} \right)}+1=0 \\
& \Rightarrow (-12)\left( \dfrac{-3}{4} \right)+10+1=0 \\
& \Rightarrow 20=0 \\
\end{align}\]
But this is never possible. So, we cannot say that n is even.
Case 2: Let us assume n is an odd integer.
If n is odd, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=-\cos x\].
So, by using above relations, we get
\[\Rightarrow -12(\tan (2{{\tan }^{-1}}(3)))-\dfrac{\sqrt{10}}{\cos \left( {{\tan }^{-1}}(3) \right)}+1=0\]
We know that \[2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\] and \[{{\tan }^{-1}}\dfrac{a}{b}={{\cos }^{-1}}\dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\] , here we have a=3, b=1.
\[\begin{align}
& \Rightarrow -12Tan\left( Ta{{n}^{-1}}\left( \dfrac{2(3)}{1-{{(3)}^{2}}} \right) \right)-\dfrac{\sqrt{10}}{\cos \left( {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{10}} \right) \right)}+1=0 \\
& \Rightarrow -12Tan\left( Ta{{n}^{-1}}\left( \dfrac{-3}{4} \right) \right)-\dfrac{\sqrt{10}}{\left( \dfrac{1}{\sqrt{10}} \right)}+1=0 \\
& \Rightarrow (-12)\left( \dfrac{-3}{4} \right)-10+1=0 \\
& \Rightarrow 0=0 \\
\end{align}\]
So, we can say that n is odd.
So, the correct answer is “Option B”.
Note: While solving this problem, we should not have any misconceptions. We should remember that if n is odd, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=-\cos x\], If n is even, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=\cos x\]. But some students will have a misconception that if n is even, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=-\cos x\], If n is odd, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=\cos x\]. This will give us option D as correct. So, we should be careful while applying this concept.
Complete step-by-step answer:
Now let us assume
\[X=n\pi -{{\tan }^{-1}}(3)......(1)\]
\[12\tan 2x+\dfrac{\sqrt{10}}{\cos x}+1=0.......(2)\]
Now let us substitute equation (1) in equation (2).
\[12\tan 2(n\pi -{{\tan }^{-1}}(3))+\dfrac{\sqrt{10}}{\cos \left( n\pi -{{\tan }^{-1}}(3) \right)}+1=0\]
Case-1: Let us assume n is an even integer.
If n is even, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=\cos x\].
So, by using above relations, we get
\[\Rightarrow -12(\tan (2{{\tan }^{-1}}(3)))+\dfrac{\sqrt{10}}{\cos \left( {{\tan }^{-1}}(3) \right)}+1=0\]
We know that \[2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\] and \[{{\tan }^{-1}}\dfrac{a}{b}={{\cos }^{-1}}\dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\] , here we have a=3, b=1.
\[\begin{align}
& \Rightarrow -12Tan\left( Ta{{n}^{-1}}\left( \dfrac{2(3)}{1-{{(3)}^{2}}} \right) \right)+\dfrac{\sqrt{10}}{\cos \left( {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{10}} \right) \right)}+1=0 \\
& \Rightarrow -12Tan\left( Ta{{n}^{-1}}\left( \dfrac{-3}{4} \right) \right)+\dfrac{\sqrt{10}}{\left( \dfrac{1}{\sqrt{10}} \right)}+1=0 \\
& \Rightarrow (-12)\left( \dfrac{-3}{4} \right)+10+1=0 \\
& \Rightarrow 20=0 \\
\end{align}\]
But this is never possible. So, we cannot say that n is even.
Case 2: Let us assume n is an odd integer.
If n is odd, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=-\cos x\].
So, by using above relations, we get
\[\Rightarrow -12(\tan (2{{\tan }^{-1}}(3)))-\dfrac{\sqrt{10}}{\cos \left( {{\tan }^{-1}}(3) \right)}+1=0\]
We know that \[2{{\tan }^{-1}}x={{\tan }^{-1}}\left( \dfrac{2x}{1-{{x}^{2}}} \right)\] and \[{{\tan }^{-1}}\dfrac{a}{b}={{\cos }^{-1}}\dfrac{b}{\sqrt{{{a}^{2}}+{{b}^{2}}}}\] , here we have a=3, b=1.
\[\begin{align}
& \Rightarrow -12Tan\left( Ta{{n}^{-1}}\left( \dfrac{2(3)}{1-{{(3)}^{2}}} \right) \right)-\dfrac{\sqrt{10}}{\cos \left( {{\cos }^{-1}}\left( \dfrac{1}{\sqrt{10}} \right) \right)}+1=0 \\
& \Rightarrow -12Tan\left( Ta{{n}^{-1}}\left( \dfrac{-3}{4} \right) \right)-\dfrac{\sqrt{10}}{\left( \dfrac{1}{\sqrt{10}} \right)}+1=0 \\
& \Rightarrow (-12)\left( \dfrac{-3}{4} \right)-10+1=0 \\
& \Rightarrow 0=0 \\
\end{align}\]
So, we can say that n is odd.
So, the correct answer is “Option B”.
Note: While solving this problem, we should not have any misconceptions. We should remember that if n is odd, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=-\cos x\], If n is even, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=\cos x\]. But some students will have a misconception that if n is even, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=-\cos x\], If n is odd, then \[\tan \left( n\pi -x \right)=-\tan x\] and \[\cos (n\pi -x)=\cos x\]. This will give us option D as correct. So, we should be careful while applying this concept.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

