
If $ {{x}^{n}}-1 $ is divisible by $ x-k $ then least positive integral value of $ k $ is \[\]
A.1 \[\]
B.2 \[\]
C.3 \[\]
D,4 \[\]
Answer
568.5k+ views
Hint: We recall the Euclidean division of polynomial $ p\left( x \right)=q\left( x \right)d\left( x \right)+r\left( x \right) $ where the divisor polynomial $ d\left( x \right) $ can be a factor if and only if $ r\left( x \right)=0 $ . We take $ p\left( x \right)={{x}^{n}}-1 $ and $ d\left( x \right)=x-k $ d and have $ p\left( x \right)=\left( x-k \right)q\left( x \right) $ . We put $ x=k $ to find $ p\left( k \right)=0 $ . We find for what values of $ k $ , $ p\left( k \right)=0 $ \[\]
Complete step by step answer:
We know that when we divide a divided polynomial $ p\left( x \right) $ with degree $ n $ by some divisor polynomial $ d\left( x \right) $ with degree $ m\le n $ then we get the quotient polynomial $ q\left( x \right) $ of degree $ n-m $ and the remainder polynomial as $ r\left( x \right) $ of degree either equal to $ m $ or $ m-1 $ .We use Euclidean division of polynomial and have;
\[p\left( x \right)=q\left( x \right)d\left( x \right)+r\left( x \right)\]
If the remainder polynomial $ r\left( x \right)=0 $ then $ d\left( x \right) $ becomes a factors of $ \left( x \right) $ . Let us assume $ p\left( x \right)={{x}^{n}}-1 $ and $ d\left( x \right)=x-k $ . Since we are given $ d\left( x \right)=x-k $ is factor of $ p\left( x \right)={{x}^{n}}-1 $ then we have $ r\left( x \right)=0 $ and ;
\[\begin{align}
& p\left( x \right)=q\left( x \right)d\left( x \right) \\
& \Rightarrow p\left( x \right)=\left( x-k \right)q\left( x \right) \\
\end{align}\]
Let us put $ x=k $ in the above step to have;
\[\Rightarrow p\left( x \right)=0\cdot q\left( x \right)=0\]
So $ x=k $ is a zero of the polynomial $ p\left( x \right)={{x}^{n}}+1 $ . So we have;
$ \begin{align}
& p\left( k \right)={{k}^{n}}-1=0 \\
& \Rightarrow {{k}^{n}}=1 \\
\end{align} $
The solutions of the above equations are $ n, $ $ {{n}^{\text{th}}} $ roots of unity. The only positive integral solution is 1 and hence the correct option is A. \[\]
Note:
We note that zeroes or roots of a polynomial are the value of $ x $ for which the polynomial returned zero. If the degree of the polynomial is $ n $ , then there are $ n $ zeroes may be real or complex. The roots of the polynomial $ {{x}^{n}}-1 $ are given by $ {{e}^{i\dfrac{\pi }{n}}}=\cos \dfrac{\pi }{n}+i\sin \dfrac{\pi }{n} $ for $ n=1,2,3...n $ . We can alternatively conclude $ x=1 $ is a zero of $ p\left( x \right) $ from the factor theorem which states that a polynomial $ p\left( x \right) $ has a factor $ \left( x-a \right) $ if and only if $ p\left( a \right)=0 $ in other words $ a $ is a zero of $ p\left( x \right) $ . We can alternatively solve using the algebraic identity $ {{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {{a}^{n-1}}+{{a}^{n-2}}b+...+a{{b}^{n-2}}+{{b}^{n-1}} \right) $ with $ a=1,b=x $ . We shall find that\[\left( {{1}^{n}}+{{x}^{n}} \right)=\left( 1+x \right)\left( 1+x+{{x}^{2}}+...+{{x}^{n-1}} \right)\]. Since $ 1+x+{{x}^{2}}+...+{{x}^{n-1}}\ne 0 $ , $ x-1 $ is a factor of $ {{x}^{n}}-1 $ and hence $ x=1 $ is zero of the polynomial.
Complete step by step answer:
We know that when we divide a divided polynomial $ p\left( x \right) $ with degree $ n $ by some divisor polynomial $ d\left( x \right) $ with degree $ m\le n $ then we get the quotient polynomial $ q\left( x \right) $ of degree $ n-m $ and the remainder polynomial as $ r\left( x \right) $ of degree either equal to $ m $ or $ m-1 $ .We use Euclidean division of polynomial and have;
\[p\left( x \right)=q\left( x \right)d\left( x \right)+r\left( x \right)\]
If the remainder polynomial $ r\left( x \right)=0 $ then $ d\left( x \right) $ becomes a factors of $ \left( x \right) $ . Let us assume $ p\left( x \right)={{x}^{n}}-1 $ and $ d\left( x \right)=x-k $ . Since we are given $ d\left( x \right)=x-k $ is factor of $ p\left( x \right)={{x}^{n}}-1 $ then we have $ r\left( x \right)=0 $ and ;
\[\begin{align}
& p\left( x \right)=q\left( x \right)d\left( x \right) \\
& \Rightarrow p\left( x \right)=\left( x-k \right)q\left( x \right) \\
\end{align}\]
Let us put $ x=k $ in the above step to have;
\[\Rightarrow p\left( x \right)=0\cdot q\left( x \right)=0\]
So $ x=k $ is a zero of the polynomial $ p\left( x \right)={{x}^{n}}+1 $ . So we have;
$ \begin{align}
& p\left( k \right)={{k}^{n}}-1=0 \\
& \Rightarrow {{k}^{n}}=1 \\
\end{align} $
The solutions of the above equations are $ n, $ $ {{n}^{\text{th}}} $ roots of unity. The only positive integral solution is 1 and hence the correct option is A. \[\]
Note:
We note that zeroes or roots of a polynomial are the value of $ x $ for which the polynomial returned zero. If the degree of the polynomial is $ n $ , then there are $ n $ zeroes may be real or complex. The roots of the polynomial $ {{x}^{n}}-1 $ are given by $ {{e}^{i\dfrac{\pi }{n}}}=\cos \dfrac{\pi }{n}+i\sin \dfrac{\pi }{n} $ for $ n=1,2,3...n $ . We can alternatively conclude $ x=1 $ is a zero of $ p\left( x \right) $ from the factor theorem which states that a polynomial $ p\left( x \right) $ has a factor $ \left( x-a \right) $ if and only if $ p\left( a \right)=0 $ in other words $ a $ is a zero of $ p\left( x \right) $ . We can alternatively solve using the algebraic identity $ {{a}^{n}}-{{b}^{n}}=\left( a-b \right)\left( {{a}^{n-1}}+{{a}^{n-2}}b+...+a{{b}^{n-2}}+{{b}^{n-1}} \right) $ with $ a=1,b=x $ . We shall find that\[\left( {{1}^{n}}+{{x}^{n}} \right)=\left( 1+x \right)\left( 1+x+{{x}^{2}}+...+{{x}^{n-1}} \right)\]. Since $ 1+x+{{x}^{2}}+...+{{x}^{n-1}}\ne 0 $ , $ x-1 $ is a factor of $ {{x}^{n}}-1 $ and hence $ x=1 $ is zero of the polynomial.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE

Differentiate between Food chain and Food web class 10 biology CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

My birthday is June 27 a On b Into c Between d In class 10 english CBSE

