
If $x=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ and $y=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$, find ${{x}^{2}}+{{y}^{2}}$ .
Answer
519k+ views
Hint: First we will rationalize the denominator of each x and y. Then we will substitute the obtained value of x and y in the given expression ${{x}^{2}}+{{y}^{2}}$. Then simplifying the obtained equation we will get the desired answer.
Complete step by step solution:
We have been given the values $x=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ and $y=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$.
We have to find the value of ${{x}^{2}}+{{y}^{2}}$.
As the given values of x and y has roots in the denominator so first we will rationalize the denominators of x and y. Then we will get
$\Rightarrow x=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\times \dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}$
Now, we know that ${{a}^{2}}+{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow x=\dfrac{\left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)}{\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)} \\
& \Rightarrow x=\dfrac{\sqrt{3}\times \sqrt{3}+\sqrt{3}\times \sqrt{2}+\sqrt{3}\times \sqrt{2}+\sqrt{2}\times \sqrt{2}}{{{\left( \sqrt{3} \right)}^{2}}-{{\left( \sqrt{2} \right)}^{2}}} \\
& \Rightarrow x=\dfrac{3+\sqrt{6}+\sqrt{6}+2}{3-2} \\
& \Rightarrow x=\dfrac{5+2\sqrt{6}}{1} \\
& \Rightarrow x=5+2\sqrt{6} \\
\end{align}\]
Now, let us rationalize the y then we will get
$\Rightarrow y=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\times \dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}$
Now, we know that ${{a}^{2}}+{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow y=\dfrac{\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}-\sqrt{2} \right)}{\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)} \\
& \Rightarrow y=\dfrac{\sqrt{3}\times \sqrt{3}-\sqrt{3}\times \sqrt{2}-\sqrt{3}\times \sqrt{2}+\sqrt{2}\times \sqrt{2}}{{{\left( \sqrt{3} \right)}^{2}}-{{\left( \sqrt{2} \right)}^{2}}} \\
& \Rightarrow y=\dfrac{3-\sqrt{6}-\sqrt{6}+2}{3-2} \\
& \Rightarrow y=\dfrac{5-2\sqrt{6}}{1} \\
& \Rightarrow y=5-2\sqrt{6} \\
\end{align}\]
Now, let us consider the expression ${{x}^{2}}+{{y}^{2}}$.
Now, substituting the values of x and y we will get
$= {{\left( 5+2\sqrt{6} \right)}^{2}}+{{\left( 5-2\sqrt{6} \right)}^{2}}$
Now, simplifying the above obtained equation we will get
$\begin{align}
& = {{5}^{2}}+{{\left( 2\sqrt{6} \right)}^{2}}+2\times 5\times 2\sqrt{6}+{{5}^{2}}+{{\left( 2\sqrt{6} \right)}^{2}}-2\times 5\times 2\sqrt{6} \\
& = 25+24+20\sqrt{6}+25+24-20\sqrt{6} \\
& = 50+48 \\
& = 98 \\
\end{align}$
Hence we get the value of ${{x}^{2}}+{{y}^{2}}$ as 98.
Note: Alternatively we can directly substitute the values of x and y in the given expression without rationalizing the values. The point to be remembered is that to rationalize the denominator we must multiply the numerator and denominator both by the conjugate of the denominator.
Complete step by step solution:
We have been given the values $x=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}$ and $y=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}$.
We have to find the value of ${{x}^{2}}+{{y}^{2}}$.
As the given values of x and y has roots in the denominator so first we will rationalize the denominators of x and y. Then we will get
$\Rightarrow x=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\times \dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}}$
Now, we know that ${{a}^{2}}+{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow x=\dfrac{\left( \sqrt{3}+\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)}{\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)} \\
& \Rightarrow x=\dfrac{\sqrt{3}\times \sqrt{3}+\sqrt{3}\times \sqrt{2}+\sqrt{3}\times \sqrt{2}+\sqrt{2}\times \sqrt{2}}{{{\left( \sqrt{3} \right)}^{2}}-{{\left( \sqrt{2} \right)}^{2}}} \\
& \Rightarrow x=\dfrac{3+\sqrt{6}+\sqrt{6}+2}{3-2} \\
& \Rightarrow x=\dfrac{5+2\sqrt{6}}{1} \\
& \Rightarrow x=5+2\sqrt{6} \\
\end{align}\]
Now, let us rationalize the y then we will get
$\Rightarrow y=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\times \dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}$
Now, we know that ${{a}^{2}}+{{b}^{2}}=\left( a+b \right)\left( a-b \right)$
Now, simplifying the above obtained equation we will get
\[\begin{align}
& \Rightarrow y=\dfrac{\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}-\sqrt{2} \right)}{\left( \sqrt{3}-\sqrt{2} \right)\left( \sqrt{3}+\sqrt{2} \right)} \\
& \Rightarrow y=\dfrac{\sqrt{3}\times \sqrt{3}-\sqrt{3}\times \sqrt{2}-\sqrt{3}\times \sqrt{2}+\sqrt{2}\times \sqrt{2}}{{{\left( \sqrt{3} \right)}^{2}}-{{\left( \sqrt{2} \right)}^{2}}} \\
& \Rightarrow y=\dfrac{3-\sqrt{6}-\sqrt{6}+2}{3-2} \\
& \Rightarrow y=\dfrac{5-2\sqrt{6}}{1} \\
& \Rightarrow y=5-2\sqrt{6} \\
\end{align}\]
Now, let us consider the expression ${{x}^{2}}+{{y}^{2}}$.
Now, substituting the values of x and y we will get
$= {{\left( 5+2\sqrt{6} \right)}^{2}}+{{\left( 5-2\sqrt{6} \right)}^{2}}$
Now, simplifying the above obtained equation we will get
$\begin{align}
& = {{5}^{2}}+{{\left( 2\sqrt{6} \right)}^{2}}+2\times 5\times 2\sqrt{6}+{{5}^{2}}+{{\left( 2\sqrt{6} \right)}^{2}}-2\times 5\times 2\sqrt{6} \\
& = 25+24+20\sqrt{6}+25+24-20\sqrt{6} \\
& = 50+48 \\
& = 98 \\
\end{align}$
Hence we get the value of ${{x}^{2}}+{{y}^{2}}$ as 98.
Note: Alternatively we can directly substitute the values of x and y in the given expression without rationalizing the values. The point to be remembered is that to rationalize the denominator we must multiply the numerator and denominator both by the conjugate of the denominator.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

