
If \[x=7-4\sqrt{3}\], then find the value of
(i) \[\left( \sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\]
(ii) \[\left( \sqrt{x}-\dfrac{1}{\sqrt{x}} \right)\]
Answer
582.9k+ views
Hint: First of all express, \[x=7-4\sqrt{3}\text{ as }x={{\left( \sqrt{3} \right)}^{2}}+{{\left( 2 \right)}^{2}}-2.2\sqrt{3}\] which can be converted into a perfect square by using \[{{a}^{2}}+{{b}^{2}}-2ab={{\left( a+b \right)}^{2}}\]. From here, find the value of \[\sqrt{x}\text{ and }\dfrac{1}{\sqrt{x}}\] and substitute these values in \[\left( \sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\text{ and }\left( \sqrt{x}-\dfrac{1}{\sqrt{x}} \right)\] to find the correct answer.
Complete step by step solution:
We are given that \[x=7-4\sqrt{3}\], then we have to find the value of
(i) \[\left( \sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\]
(ii) \[\left( \sqrt{x}-\dfrac{1}{\sqrt{x}} \right)\]
Let us consider the value of x given in the question
\[x=7-4\sqrt{3}\]
We can write the above value of x as
\[x=3+4-4\sqrt{3}\]
\[x={{\left( \sqrt{3} \right)}^{2}}+{{\left( 2 \right)}^{2}}-2.2\sqrt{3}\]
We know that,
\[{{a}^{2}}+{{b}^{2}}-2ab={{\left( a+b \right)}^{2}}\]
So, by using this and considering \[a=\sqrt{3}\] and b = 2, we get
\[x={{\left( \sqrt{3}-2 \right)}^{2}}\]
By taking square root on both the sides of the above equation, we get,
\[\sqrt{x}=\sqrt{{{\left( \sqrt{3}-2 \right)}^{2}}}\]
So, we get,
\[\sqrt{x}=\pm \left( \sqrt{3}-2 \right)\]
\[\sqrt{x}=\left( \sqrt{3}-2 \right);\sqrt{x}=-\left( \sqrt{3}-2 \right)\]
Also, for \[\sqrt{x}=\left( \sqrt{3}-2 \right)\], we get \[\dfrac{1}{\sqrt{x}}=\dfrac{1}{\left( \sqrt{3}-2 \right)}\]
By multiplying \[\left( \sqrt{3}+2 \right)\] on both the numerator and denominator, we get,
\[\dfrac{1}{\sqrt{x}}=\dfrac{\left( \sqrt{3}+2 \right)}{\left( \sqrt{3}-2 \right)\left( \sqrt{3}+2 \right)}\]
By using \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\], we get,
\[\dfrac{1}{\sqrt{x}}=\dfrac{\left( \sqrt{3}+2 \right)}{{{\left( \sqrt{3} \right)}^{2}}-{{\left( 2 \right)}^{2}}}\]
\[\dfrac{1}{\sqrt{x}}=\dfrac{\left( \sqrt{3}+2 \right)}{3-4}\]
\[\dfrac{1}{\sqrt{x}}=-\left( \sqrt{3}+2 \right)\]
So, we get,
\[\sqrt{x}=\left( \sqrt{3}-2 \right)\text{ and }\dfrac{1}{\sqrt{x}}=-\left( \sqrt{3}+2 \right)....\left( i \right)\]
Now, for \[\sqrt{x}=-\left( \sqrt{3}-2 \right)\], we get,
\[\dfrac{1}{\sqrt{x}}=\dfrac{1}{-\left( \sqrt{3}-2 \right)}\]
By multiplying, \[\left( \sqrt{3}+2 \right)\] on both numerator and denominator, we get,
\[\dfrac{1}{\sqrt{x}}=\dfrac{\left( \sqrt{3}+2 \right)}{-\left( \sqrt{3}-2 \right)\left( \sqrt{3}+2 \right)}\]
\[\dfrac{1}{\sqrt{x}}=\dfrac{\left( \sqrt{3}+2 \right)}{-\left[ {{\left( \sqrt{3} \right)}^{2}}-{{\left( 2 \right)}^{2}} \right]}\]
\[\dfrac{1}{\sqrt{x}}=\dfrac{\left( \sqrt{3}+2 \right)}{-\left( 3-4 \right)}\]
\[\dfrac{1}{\sqrt{x}}=\left( \sqrt{3}+2 \right)\]
So, we get,
\[\sqrt{x}=-\left( \sqrt{3}-2 \right)\text{ and }\dfrac{1}{\sqrt{x}}=\left( \sqrt{3}+2 \right)....\left( ii \right)\]
Now, let us find the value of
(i) \[E=\left( \sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\]
From equation (i), we have
\[\sqrt{x}=\left( \sqrt{3}-2 \right)\text{ and }\dfrac{1}{\sqrt{x}}=-\left( \sqrt{3}+2 \right)\]
So, substituting these in the above expression, we get,
\[E=\left( \sqrt{3}-2 \right)+\left[ -\left( \sqrt{3}+2 \right) \right]\]
\[E=\sqrt{3}-2-\sqrt{3}-2\]
\[E=-4\]
From equation (ii), we have
\[\sqrt{x}=-\left( \sqrt{3}-2 \right)\text{ and }\dfrac{1}{\sqrt{x}}=\left( \sqrt{3}+2 \right)\]
So, substituting these in the above expression, we get,
\[E=\left( \sqrt{3}-2 \right)+\left( \sqrt{3}+2 \right)\]
\[E=-\sqrt{3}+2+\sqrt{3}-2\]
\[E=4\]
Now, let us find the value of
(ii) \[F=\left( \sqrt{x}-\dfrac{1}{\sqrt{x}} \right)\]
From equation (i), we have
\[\sqrt{x}=\left( \sqrt{3}-2 \right)\text{ and }\dfrac{1}{\sqrt{x}}=-\left( \sqrt{3}+2 \right)\]
So, substituting these in the above expression, we get,
\[F=\left( \sqrt{3}-2 \right)-\left[ -\left( \sqrt{3}+2 \right) \right]\]
\[F=\sqrt{3}-2+\sqrt{3}+2\]
\[F=2\sqrt{3}\]
From equation (ii), we have
\[\sqrt{x}=-\left( \sqrt{3}-2 \right)\text{ and }\dfrac{1}{\sqrt{x}}=\left( \sqrt{3}+2 \right)\]
So, substituting these in the above expression, we get,
\[F=-\left( \sqrt{3}-2 \right)-\left( \sqrt{3}+2 \right)\]
\[F=-\sqrt{3}+2-\sqrt{3}-2\]
\[F=-2\sqrt{3}\]
Note: In this question, many students just take \[\sqrt{x}=\sqrt{3}-2\] and they miss \[\sqrt{x}=-\left( \sqrt{3}-2 \right)\], but both the values of \[\sqrt{x}\] should be taken. So, this must be taken care of. Also, students must take \[\dfrac{1}{\sqrt{x}}\] corresponding to the given \[\sqrt{x}\] and should not get confused between the two values of \[\sqrt{x}\] by doing it separately. Also, students should always rationalize the denominator whenever it is irrational by multiplying it with its conjugate like for example, we convert \[\dfrac{1}{\left( \sqrt{3}-2 \right)}\text{ to }-\left( \sqrt{3}+2 \right)\] by multiplying both numerator and denominator by \[\left( \sqrt{3}+2 \right)\].
Complete step by step solution:
We are given that \[x=7-4\sqrt{3}\], then we have to find the value of
(i) \[\left( \sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\]
(ii) \[\left( \sqrt{x}-\dfrac{1}{\sqrt{x}} \right)\]
Let us consider the value of x given in the question
\[x=7-4\sqrt{3}\]
We can write the above value of x as
\[x=3+4-4\sqrt{3}\]
\[x={{\left( \sqrt{3} \right)}^{2}}+{{\left( 2 \right)}^{2}}-2.2\sqrt{3}\]
We know that,
\[{{a}^{2}}+{{b}^{2}}-2ab={{\left( a+b \right)}^{2}}\]
So, by using this and considering \[a=\sqrt{3}\] and b = 2, we get
\[x={{\left( \sqrt{3}-2 \right)}^{2}}\]
By taking square root on both the sides of the above equation, we get,
\[\sqrt{x}=\sqrt{{{\left( \sqrt{3}-2 \right)}^{2}}}\]
So, we get,
\[\sqrt{x}=\pm \left( \sqrt{3}-2 \right)\]
\[\sqrt{x}=\left( \sqrt{3}-2 \right);\sqrt{x}=-\left( \sqrt{3}-2 \right)\]
Also, for \[\sqrt{x}=\left( \sqrt{3}-2 \right)\], we get \[\dfrac{1}{\sqrt{x}}=\dfrac{1}{\left( \sqrt{3}-2 \right)}\]
By multiplying \[\left( \sqrt{3}+2 \right)\] on both the numerator and denominator, we get,
\[\dfrac{1}{\sqrt{x}}=\dfrac{\left( \sqrt{3}+2 \right)}{\left( \sqrt{3}-2 \right)\left( \sqrt{3}+2 \right)}\]
By using \[\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}\], we get,
\[\dfrac{1}{\sqrt{x}}=\dfrac{\left( \sqrt{3}+2 \right)}{{{\left( \sqrt{3} \right)}^{2}}-{{\left( 2 \right)}^{2}}}\]
\[\dfrac{1}{\sqrt{x}}=\dfrac{\left( \sqrt{3}+2 \right)}{3-4}\]
\[\dfrac{1}{\sqrt{x}}=-\left( \sqrt{3}+2 \right)\]
So, we get,
\[\sqrt{x}=\left( \sqrt{3}-2 \right)\text{ and }\dfrac{1}{\sqrt{x}}=-\left( \sqrt{3}+2 \right)....\left( i \right)\]
Now, for \[\sqrt{x}=-\left( \sqrt{3}-2 \right)\], we get,
\[\dfrac{1}{\sqrt{x}}=\dfrac{1}{-\left( \sqrt{3}-2 \right)}\]
By multiplying, \[\left( \sqrt{3}+2 \right)\] on both numerator and denominator, we get,
\[\dfrac{1}{\sqrt{x}}=\dfrac{\left( \sqrt{3}+2 \right)}{-\left( \sqrt{3}-2 \right)\left( \sqrt{3}+2 \right)}\]
\[\dfrac{1}{\sqrt{x}}=\dfrac{\left( \sqrt{3}+2 \right)}{-\left[ {{\left( \sqrt{3} \right)}^{2}}-{{\left( 2 \right)}^{2}} \right]}\]
\[\dfrac{1}{\sqrt{x}}=\dfrac{\left( \sqrt{3}+2 \right)}{-\left( 3-4 \right)}\]
\[\dfrac{1}{\sqrt{x}}=\left( \sqrt{3}+2 \right)\]
So, we get,
\[\sqrt{x}=-\left( \sqrt{3}-2 \right)\text{ and }\dfrac{1}{\sqrt{x}}=\left( \sqrt{3}+2 \right)....\left( ii \right)\]
Now, let us find the value of
(i) \[E=\left( \sqrt{x}+\dfrac{1}{\sqrt{x}} \right)\]
From equation (i), we have
\[\sqrt{x}=\left( \sqrt{3}-2 \right)\text{ and }\dfrac{1}{\sqrt{x}}=-\left( \sqrt{3}+2 \right)\]
So, substituting these in the above expression, we get,
\[E=\left( \sqrt{3}-2 \right)+\left[ -\left( \sqrt{3}+2 \right) \right]\]
\[E=\sqrt{3}-2-\sqrt{3}-2\]
\[E=-4\]
From equation (ii), we have
\[\sqrt{x}=-\left( \sqrt{3}-2 \right)\text{ and }\dfrac{1}{\sqrt{x}}=\left( \sqrt{3}+2 \right)\]
So, substituting these in the above expression, we get,
\[E=\left( \sqrt{3}-2 \right)+\left( \sqrt{3}+2 \right)\]
\[E=-\sqrt{3}+2+\sqrt{3}-2\]
\[E=4\]
Now, let us find the value of
(ii) \[F=\left( \sqrt{x}-\dfrac{1}{\sqrt{x}} \right)\]
From equation (i), we have
\[\sqrt{x}=\left( \sqrt{3}-2 \right)\text{ and }\dfrac{1}{\sqrt{x}}=-\left( \sqrt{3}+2 \right)\]
So, substituting these in the above expression, we get,
\[F=\left( \sqrt{3}-2 \right)-\left[ -\left( \sqrt{3}+2 \right) \right]\]
\[F=\sqrt{3}-2+\sqrt{3}+2\]
\[F=2\sqrt{3}\]
From equation (ii), we have
\[\sqrt{x}=-\left( \sqrt{3}-2 \right)\text{ and }\dfrac{1}{\sqrt{x}}=\left( \sqrt{3}+2 \right)\]
So, substituting these in the above expression, we get,
\[F=-\left( \sqrt{3}-2 \right)-\left( \sqrt{3}+2 \right)\]
\[F=-\sqrt{3}+2-\sqrt{3}-2\]
\[F=-2\sqrt{3}\]
Note: In this question, many students just take \[\sqrt{x}=\sqrt{3}-2\] and they miss \[\sqrt{x}=-\left( \sqrt{3}-2 \right)\], but both the values of \[\sqrt{x}\] should be taken. So, this must be taken care of. Also, students must take \[\dfrac{1}{\sqrt{x}}\] corresponding to the given \[\sqrt{x}\] and should not get confused between the two values of \[\sqrt{x}\] by doing it separately. Also, students should always rationalize the denominator whenever it is irrational by multiplying it with its conjugate like for example, we convert \[\dfrac{1}{\left( \sqrt{3}-2 \right)}\text{ to }-\left( \sqrt{3}+2 \right)\] by multiplying both numerator and denominator by \[\left( \sqrt{3}+2 \right)\].
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?


