Answer
Verified
455.4k+ views
Hint: In this question, we will proceed by differentiating on both sides w.r.t ‘\[x\]’ by using the product rule of differentiation. Then simplify further by grouping and cancelling the common terms to prove the given equation.
Complete step-by-step answer:
Let the given equation be ${x^3}{y^5} = {\left( {x + y} \right)^8}............................................\left( 1 \right)$
Differentiating equation (1) w.r.t ‘$x$’ on both sides, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^3}{y^5}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^8}\]
By product rule we have \[\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( y \right)} \right] = g\left( y \right)\dfrac{{df\left( x \right)}}{{dx}} + f\left( x \right)\dfrac{{dg\left( y \right)}}{{dx}}\]. So, using product rule we have
\[ \Rightarrow {y^5}\dfrac{d}{{dx}}\left( {{x^3}} \right) + {x^5}\dfrac{d}{{dx}}\left( {{y^5}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^8}\]
We know that \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]. By using this formula, we have
\[
\Rightarrow {y^5}\left( {3{x^2}} \right) + {x^3}\left( {5{y^4}\dfrac{{dy}}{{dx}}} \right) = 8{\left( {x + y} \right)^7}\left[ {\dfrac{d}{{dx}}\left( {x + y} \right)} \right] \\
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7}\left[ {\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( y \right)} \right] \\
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7}\left[ {1 + \dfrac{{dy}}{{dx}}} \right] \\
\]
Simplifying further, we have
\[
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} + 8{\left( {x + y} \right)^7}\dfrac{{dy}}{{dx}} \\
\Rightarrow \left( {5{x^3}{y^4} - 8{{\left( {x + y} \right)}^7}} \right)\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} - 3{x^2}{y^5}.................................................\left( 2 \right) \\
\]
From equation (1) we have
\[
\Rightarrow {x^3}{y^5} = {\left( {x + y} \right)^8} \\
\Rightarrow {x^3}{y^4} = \dfrac{{{{\left( {x + y} \right)}^8}}}{y}..........................................\left( 3 \right) \\
\]
Also, from equation (1), we have
\[
\Rightarrow {x^3}{y^5} = {\left( {x + y} \right)^8} \\
\Rightarrow {x^2}{y^5} = \dfrac{{{{\left( {x + y} \right)}^8}}}{x}..........................................\left( 4 \right) \\
\]
Substituting equation (3) and (4) in equation (2), we have
\[ \Rightarrow \left( {5\dfrac{{{{\left( {x + y} \right)}^8}}}{y} - 8{{\left( {x + y} \right)}^7}} \right)\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} - 3\dfrac{{{{\left( {x + y} \right)}^8}}}{x}\]
Grouping and cancelling the common terms, we have
\[
\Rightarrow {\left( {x + y} \right)^7}\left( {5\dfrac{{\left( {x + y} \right)}}{y} - 8} \right)\dfrac{{dy}}{{dx}} = {\left( {x + y} \right)^7}\left[ {8 - 3\dfrac{{\left( {x + y} \right)}}{x}} \right] \\
\Rightarrow {\left( {x + y} \right)^7}\left( {\dfrac{{5x + 5y - 8y}}{y}} \right)\dfrac{{dy}}{{dx}} = {\left( {x + y} \right)^7}\left[ {\dfrac{{8x - 3x - 3y}}{x}} \right] \\
\Rightarrow \left( {\dfrac{{5x - 3y}}{y}} \right)\dfrac{{dy}}{{dx}} = \left[ {\dfrac{{5x - 3y}}{x}} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{5x - 3y}}{x} \times \dfrac{y}{{5x - 3y}} \\
\therefore \dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\]
Hence proved.
Note: Product rule of differentiation states the if the functions \[f\left( x \right)\] and \[g\left( y \right)\] are differentiable then \[\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( y \right)} \right] = g\left( y \right)\dfrac{{df\left( x \right)}}{{dx}} + f\left( x \right)\dfrac{{dg\left( y \right)}}{{dx}}\]. In these types of questions, try to solve the differentiation in a simpler way by not expanding the powers of the variables.
Complete step-by-step answer:
Let the given equation be ${x^3}{y^5} = {\left( {x + y} \right)^8}............................................\left( 1 \right)$
Differentiating equation (1) w.r.t ‘$x$’ on both sides, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^3}{y^5}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^8}\]
By product rule we have \[\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( y \right)} \right] = g\left( y \right)\dfrac{{df\left( x \right)}}{{dx}} + f\left( x \right)\dfrac{{dg\left( y \right)}}{{dx}}\]. So, using product rule we have
\[ \Rightarrow {y^5}\dfrac{d}{{dx}}\left( {{x^3}} \right) + {x^5}\dfrac{d}{{dx}}\left( {{y^5}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^8}\]
We know that \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]. By using this formula, we have
\[
\Rightarrow {y^5}\left( {3{x^2}} \right) + {x^3}\left( {5{y^4}\dfrac{{dy}}{{dx}}} \right) = 8{\left( {x + y} \right)^7}\left[ {\dfrac{d}{{dx}}\left( {x + y} \right)} \right] \\
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7}\left[ {\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( y \right)} \right] \\
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7}\left[ {1 + \dfrac{{dy}}{{dx}}} \right] \\
\]
Simplifying further, we have
\[
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} + 8{\left( {x + y} \right)^7}\dfrac{{dy}}{{dx}} \\
\Rightarrow \left( {5{x^3}{y^4} - 8{{\left( {x + y} \right)}^7}} \right)\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} - 3{x^2}{y^5}.................................................\left( 2 \right) \\
\]
From equation (1) we have
\[
\Rightarrow {x^3}{y^5} = {\left( {x + y} \right)^8} \\
\Rightarrow {x^3}{y^4} = \dfrac{{{{\left( {x + y} \right)}^8}}}{y}..........................................\left( 3 \right) \\
\]
Also, from equation (1), we have
\[
\Rightarrow {x^3}{y^5} = {\left( {x + y} \right)^8} \\
\Rightarrow {x^2}{y^5} = \dfrac{{{{\left( {x + y} \right)}^8}}}{x}..........................................\left( 4 \right) \\
\]
Substituting equation (3) and (4) in equation (2), we have
\[ \Rightarrow \left( {5\dfrac{{{{\left( {x + y} \right)}^8}}}{y} - 8{{\left( {x + y} \right)}^7}} \right)\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} - 3\dfrac{{{{\left( {x + y} \right)}^8}}}{x}\]
Grouping and cancelling the common terms, we have
\[
\Rightarrow {\left( {x + y} \right)^7}\left( {5\dfrac{{\left( {x + y} \right)}}{y} - 8} \right)\dfrac{{dy}}{{dx}} = {\left( {x + y} \right)^7}\left[ {8 - 3\dfrac{{\left( {x + y} \right)}}{x}} \right] \\
\Rightarrow {\left( {x + y} \right)^7}\left( {\dfrac{{5x + 5y - 8y}}{y}} \right)\dfrac{{dy}}{{dx}} = {\left( {x + y} \right)^7}\left[ {\dfrac{{8x - 3x - 3y}}{x}} \right] \\
\Rightarrow \left( {\dfrac{{5x - 3y}}{y}} \right)\dfrac{{dy}}{{dx}} = \left[ {\dfrac{{5x - 3y}}{x}} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{5x - 3y}}{x} \times \dfrac{y}{{5x - 3y}} \\
\therefore \dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\]
Hence proved.
Note: Product rule of differentiation states the if the functions \[f\left( x \right)\] and \[g\left( y \right)\] are differentiable then \[\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( y \right)} \right] = g\left( y \right)\dfrac{{df\left( x \right)}}{{dx}} + f\left( x \right)\dfrac{{dg\left( y \right)}}{{dx}}\]. In these types of questions, try to solve the differentiation in a simpler way by not expanding the powers of the variables.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE