
If ${x^3}{y^5} = {\left( {x + y} \right)^8}$, then show that $\dfrac{{dy}}{{dx}} = \dfrac{y}{x}$
Answer
569.4k+ views
Hint: In this question, we will proceed by differentiating on both sides w.r.t ‘\[x\]’ by using the product rule of differentiation. Then simplify further by grouping and cancelling the common terms to prove the given equation.
Complete step-by-step answer:
Let the given equation be ${x^3}{y^5} = {\left( {x + y} \right)^8}............................................\left( 1 \right)$
Differentiating equation (1) w.r.t ‘$x$’ on both sides, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^3}{y^5}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^8}\]
By product rule we have \[\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( y \right)} \right] = g\left( y \right)\dfrac{{df\left( x \right)}}{{dx}} + f\left( x \right)\dfrac{{dg\left( y \right)}}{{dx}}\]. So, using product rule we have
\[ \Rightarrow {y^5}\dfrac{d}{{dx}}\left( {{x^3}} \right) + {x^5}\dfrac{d}{{dx}}\left( {{y^5}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^8}\]
We know that \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]. By using this formula, we have
\[
\Rightarrow {y^5}\left( {3{x^2}} \right) + {x^3}\left( {5{y^4}\dfrac{{dy}}{{dx}}} \right) = 8{\left( {x + y} \right)^7}\left[ {\dfrac{d}{{dx}}\left( {x + y} \right)} \right] \\
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7}\left[ {\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( y \right)} \right] \\
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7}\left[ {1 + \dfrac{{dy}}{{dx}}} \right] \\
\]
Simplifying further, we have
\[
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} + 8{\left( {x + y} \right)^7}\dfrac{{dy}}{{dx}} \\
\Rightarrow \left( {5{x^3}{y^4} - 8{{\left( {x + y} \right)}^7}} \right)\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} - 3{x^2}{y^5}.................................................\left( 2 \right) \\
\]
From equation (1) we have
\[
\Rightarrow {x^3}{y^5} = {\left( {x + y} \right)^8} \\
\Rightarrow {x^3}{y^4} = \dfrac{{{{\left( {x + y} \right)}^8}}}{y}..........................................\left( 3 \right) \\
\]
Also, from equation (1), we have
\[
\Rightarrow {x^3}{y^5} = {\left( {x + y} \right)^8} \\
\Rightarrow {x^2}{y^5} = \dfrac{{{{\left( {x + y} \right)}^8}}}{x}..........................................\left( 4 \right) \\
\]
Substituting equation (3) and (4) in equation (2), we have
\[ \Rightarrow \left( {5\dfrac{{{{\left( {x + y} \right)}^8}}}{y} - 8{{\left( {x + y} \right)}^7}} \right)\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} - 3\dfrac{{{{\left( {x + y} \right)}^8}}}{x}\]
Grouping and cancelling the common terms, we have
\[
\Rightarrow {\left( {x + y} \right)^7}\left( {5\dfrac{{\left( {x + y} \right)}}{y} - 8} \right)\dfrac{{dy}}{{dx}} = {\left( {x + y} \right)^7}\left[ {8 - 3\dfrac{{\left( {x + y} \right)}}{x}} \right] \\
\Rightarrow {\left( {x + y} \right)^7}\left( {\dfrac{{5x + 5y - 8y}}{y}} \right)\dfrac{{dy}}{{dx}} = {\left( {x + y} \right)^7}\left[ {\dfrac{{8x - 3x - 3y}}{x}} \right] \\
\Rightarrow \left( {\dfrac{{5x - 3y}}{y}} \right)\dfrac{{dy}}{{dx}} = \left[ {\dfrac{{5x - 3y}}{x}} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{5x - 3y}}{x} \times \dfrac{y}{{5x - 3y}} \\
\therefore \dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\]
Hence proved.
Note: Product rule of differentiation states the if the functions \[f\left( x \right)\] and \[g\left( y \right)\] are differentiable then \[\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( y \right)} \right] = g\left( y \right)\dfrac{{df\left( x \right)}}{{dx}} + f\left( x \right)\dfrac{{dg\left( y \right)}}{{dx}}\]. In these types of questions, try to solve the differentiation in a simpler way by not expanding the powers of the variables.
Complete step-by-step answer:
Let the given equation be ${x^3}{y^5} = {\left( {x + y} \right)^8}............................................\left( 1 \right)$
Differentiating equation (1) w.r.t ‘$x$’ on both sides, we have
\[ \Rightarrow \dfrac{d}{{dx}}\left( {{x^3}{y^5}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^8}\]
By product rule we have \[\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( y \right)} \right] = g\left( y \right)\dfrac{{df\left( x \right)}}{{dx}} + f\left( x \right)\dfrac{{dg\left( y \right)}}{{dx}}\]. So, using product rule we have
\[ \Rightarrow {y^5}\dfrac{d}{{dx}}\left( {{x^3}} \right) + {x^5}\dfrac{d}{{dx}}\left( {{y^5}} \right) = \dfrac{d}{{dx}}{\left( {x + y} \right)^8}\]
We know that \[\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}}\]. By using this formula, we have
\[
\Rightarrow {y^5}\left( {3{x^2}} \right) + {x^3}\left( {5{y^4}\dfrac{{dy}}{{dx}}} \right) = 8{\left( {x + y} \right)^7}\left[ {\dfrac{d}{{dx}}\left( {x + y} \right)} \right] \\
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7}\left[ {\dfrac{d}{{dx}}\left( x \right) + \dfrac{d}{{dx}}\left( y \right)} \right] \\
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7}\left[ {1 + \dfrac{{dy}}{{dx}}} \right] \\
\]
Simplifying further, we have
\[
\Rightarrow 3{x^2}{y^5} + 5{x^3}{y^4}\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} + 8{\left( {x + y} \right)^7}\dfrac{{dy}}{{dx}} \\
\Rightarrow \left( {5{x^3}{y^4} - 8{{\left( {x + y} \right)}^7}} \right)\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} - 3{x^2}{y^5}.................................................\left( 2 \right) \\
\]
From equation (1) we have
\[
\Rightarrow {x^3}{y^5} = {\left( {x + y} \right)^8} \\
\Rightarrow {x^3}{y^4} = \dfrac{{{{\left( {x + y} \right)}^8}}}{y}..........................................\left( 3 \right) \\
\]
Also, from equation (1), we have
\[
\Rightarrow {x^3}{y^5} = {\left( {x + y} \right)^8} \\
\Rightarrow {x^2}{y^5} = \dfrac{{{{\left( {x + y} \right)}^8}}}{x}..........................................\left( 4 \right) \\
\]
Substituting equation (3) and (4) in equation (2), we have
\[ \Rightarrow \left( {5\dfrac{{{{\left( {x + y} \right)}^8}}}{y} - 8{{\left( {x + y} \right)}^7}} \right)\dfrac{{dy}}{{dx}} = 8{\left( {x + y} \right)^7} - 3\dfrac{{{{\left( {x + y} \right)}^8}}}{x}\]
Grouping and cancelling the common terms, we have
\[
\Rightarrow {\left( {x + y} \right)^7}\left( {5\dfrac{{\left( {x + y} \right)}}{y} - 8} \right)\dfrac{{dy}}{{dx}} = {\left( {x + y} \right)^7}\left[ {8 - 3\dfrac{{\left( {x + y} \right)}}{x}} \right] \\
\Rightarrow {\left( {x + y} \right)^7}\left( {\dfrac{{5x + 5y - 8y}}{y}} \right)\dfrac{{dy}}{{dx}} = {\left( {x + y} \right)^7}\left[ {\dfrac{{8x - 3x - 3y}}{x}} \right] \\
\Rightarrow \left( {\dfrac{{5x - 3y}}{y}} \right)\dfrac{{dy}}{{dx}} = \left[ {\dfrac{{5x - 3y}}{x}} \right] \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{5x - 3y}}{x} \times \dfrac{y}{{5x - 3y}} \\
\therefore \dfrac{{dy}}{{dx}} = \dfrac{y}{x} \\
\]
Hence proved.
Note: Product rule of differentiation states the if the functions \[f\left( x \right)\] and \[g\left( y \right)\] are differentiable then \[\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( y \right)} \right] = g\left( y \right)\dfrac{{df\left( x \right)}}{{dx}} + f\left( x \right)\dfrac{{dg\left( y \right)}}{{dx}}\]. In these types of questions, try to solve the differentiation in a simpler way by not expanding the powers of the variables.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

