
If $ x=3+2\sqrt{2} $ , then find the value of $ \sqrt{x}-\dfrac{1}{\sqrt{x}} $ ?
(a) $ \pm 2 $
(b) $ \pm 4 $
(c) $ \pm 3 $
(d) none of the above
Answer
568.8k+ views
Hint: We start solving the problem by finding the value of $ \sqrt{x} $ by converting the given value of x resembling $ {{a}^{2}}+{{b}^{2}}+2ab $ . We then simplify the given $ \sqrt{x}-\dfrac{1}{\sqrt{x}} $ and substitute the obtained value of $ \sqrt{x} $ and x in it. We then make the necessary calculations to get the required value of $ \sqrt{x}-\dfrac{1}{\sqrt{x}} $ .
Complete step by step answer:
According to the problem, we are given that $ x=3+2\sqrt{2} $ and we need to find the value of $ \sqrt{x}-\dfrac{1}{\sqrt{x}} $ .
Let us first find the value of $ \sqrt{x} $ .
We have $ x=3+2\sqrt{2} $ .
$ \Rightarrow x=2+1+2\sqrt{2} $ .
$ \Rightarrow x={{\left( \sqrt{2} \right)}^{2}}+{{\left( 1 \right)}^{2}}+2\left( \sqrt{2} \right)\left( 1 \right) $ ---(1).
We can see that equation (1) resembles the equation $ {{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}} $ .
So, we get $ x={{\left( \sqrt{2}+1 \right)}^{2}} $ .
$ \Rightarrow \sqrt{x}=\pm \left( \sqrt{2}+1 \right) $ .
Let us assume we use these values to find the value of $ \sqrt{x}-\dfrac{1}{\sqrt{x}} $ .
So, we get $ \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{{{\left( \sqrt{x} \right)}^{2}}-1}{\sqrt{x}} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{x-1}{\sqrt{x}} $ .
Now, let us substitute the values of $ \sqrt{x} $ and x.
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{3+2\sqrt{2}-1}{\pm \left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{2\sqrt{2}+2}{\pm \left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{2\left( \sqrt{2}+1 \right)}{\pm \left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\pm 2 $ .
So, we have found the value of $ \sqrt{x}-\dfrac{1}{\sqrt{x}} $ as $ \pm 2 $ .
$ \therefore $ The correct option for the given problem is (a).
Note:
Whenever we get this type of problem, we should first convert the given value of x into a square. We can also solve the problem after finding the value of $ \sqrt{x} $ as shown below:
Let us assume $ \sqrt{x}=+\left( \sqrt{2}+1 \right) $ to find the value of $ \sqrt{x}-\dfrac{1}{\sqrt{x}} $ .
So, we have $ \sqrt{x}-\dfrac{1}{\sqrt{x}}=\left( \sqrt{2}+1 \right)-\dfrac{1}{\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{{{\left( \sqrt{2}+1 \right)}^{2}}-1}{\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{{{\left( \sqrt{2} \right)}^{2}}+{{\left( 1 \right)}^{2}}+2\left( \sqrt{2} \right)\left( 1 \right)-1}{\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{2+1+2\sqrt{2}-1}{\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{2+2\sqrt{2}}{\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=2 $ .
Let us assume $ \sqrt{x}=-\left( \sqrt{2}+1 \right) $ to find the value of $ \sqrt{x}-\dfrac{1}{\sqrt{x}} $ .
So, we have $ \sqrt{x}-\dfrac{1}{\sqrt{x}}=-\left( \sqrt{2}+1 \right)-\left( \dfrac{1}{-\left( \sqrt{2}+1 \right)} \right) $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{{{\left( \sqrt{2}+1 \right)}^{2}}-1}{-\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{{{\left( \sqrt{2} \right)}^{2}}+{{\left( 1 \right)}^{2}}+2\left( \sqrt{2} \right)\left( 1 \right)-1}{-\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{2+1+2\sqrt{2}-1}{-\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{2+2\sqrt{2}}{-\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=-2 $ .
So, the value of $ \sqrt{x}-\dfrac{1}{\sqrt{x}} $ is $ \pm 2 $ .
Complete step by step answer:
According to the problem, we are given that $ x=3+2\sqrt{2} $ and we need to find the value of $ \sqrt{x}-\dfrac{1}{\sqrt{x}} $ .
Let us first find the value of $ \sqrt{x} $ .
We have $ x=3+2\sqrt{2} $ .
$ \Rightarrow x=2+1+2\sqrt{2} $ .
$ \Rightarrow x={{\left( \sqrt{2} \right)}^{2}}+{{\left( 1 \right)}^{2}}+2\left( \sqrt{2} \right)\left( 1 \right) $ ---(1).
We can see that equation (1) resembles the equation $ {{a}^{2}}+{{b}^{2}}+2ab={{\left( a+b \right)}^{2}} $ .
So, we get $ x={{\left( \sqrt{2}+1 \right)}^{2}} $ .
$ \Rightarrow \sqrt{x}=\pm \left( \sqrt{2}+1 \right) $ .
Let us assume we use these values to find the value of $ \sqrt{x}-\dfrac{1}{\sqrt{x}} $ .
So, we get $ \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{{{\left( \sqrt{x} \right)}^{2}}-1}{\sqrt{x}} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{x-1}{\sqrt{x}} $ .
Now, let us substitute the values of $ \sqrt{x} $ and x.
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{3+2\sqrt{2}-1}{\pm \left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{2\sqrt{2}+2}{\pm \left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{2\left( \sqrt{2}+1 \right)}{\pm \left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\pm 2 $ .
So, we have found the value of $ \sqrt{x}-\dfrac{1}{\sqrt{x}} $ as $ \pm 2 $ .
$ \therefore $ The correct option for the given problem is (a).
Note:
Whenever we get this type of problem, we should first convert the given value of x into a square. We can also solve the problem after finding the value of $ \sqrt{x} $ as shown below:
Let us assume $ \sqrt{x}=+\left( \sqrt{2}+1 \right) $ to find the value of $ \sqrt{x}-\dfrac{1}{\sqrt{x}} $ .
So, we have $ \sqrt{x}-\dfrac{1}{\sqrt{x}}=\left( \sqrt{2}+1 \right)-\dfrac{1}{\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{{{\left( \sqrt{2}+1 \right)}^{2}}-1}{\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{{{\left( \sqrt{2} \right)}^{2}}+{{\left( 1 \right)}^{2}}+2\left( \sqrt{2} \right)\left( 1 \right)-1}{\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{2+1+2\sqrt{2}-1}{\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{2+2\sqrt{2}}{\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=2 $ .
Let us assume $ \sqrt{x}=-\left( \sqrt{2}+1 \right) $ to find the value of $ \sqrt{x}-\dfrac{1}{\sqrt{x}} $ .
So, we have $ \sqrt{x}-\dfrac{1}{\sqrt{x}}=-\left( \sqrt{2}+1 \right)-\left( \dfrac{1}{-\left( \sqrt{2}+1 \right)} \right) $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{{{\left( \sqrt{2}+1 \right)}^{2}}-1}{-\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{{{\left( \sqrt{2} \right)}^{2}}+{{\left( 1 \right)}^{2}}+2\left( \sqrt{2} \right)\left( 1 \right)-1}{-\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{2+1+2\sqrt{2}-1}{-\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{2+2\sqrt{2}}{-\left( \sqrt{2}+1 \right)} $ .
$ \Rightarrow \sqrt{x}-\dfrac{1}{\sqrt{x}}=-2 $ .
So, the value of $ \sqrt{x}-\dfrac{1}{\sqrt{x}} $ is $ \pm 2 $ .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

