
If ${{x}^{2}}-x+1=0$, then find the value of $\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}$.
Answer
531.6k+ views
Hint: In this problem, we will first need to find the roots of the quadratic equation using the quadratic formula. Then, we can invert the value of $x$ to find $\dfrac{1}{x}$, and find $\theta $ by changing them into polar form. Now, we should use the DeMoivre’s theorem that states ${{\left[ r\left( \cos \phi +i\sin \phi \right) \right]}^{n}}={{r}^{n}}\left( \cos n\phi +i\sin n\phi \right)$, we can then further expand the summation and substitute the value of $\theta $ to get the answer.
Complete step by step answer:
We are given with the quadratic equation ${{x}^{2}}-x+1=0$. Let us find the roots of this equation.
We know by the quadratic formula that the roots of the quadratic equation $a{{x}^{2}}+bx+c=0$ are $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
So, here we will have
\[x=\dfrac{1\pm \sqrt{1-4}}{2}\]
\[\Rightarrow x=\dfrac{1\pm \sqrt{3}i}{2}\]
So, we can also write
\[\dfrac{1}{x}=\dfrac{2}{1\pm \sqrt{3}i}\]
We can simplify the above equation by rationalising as
\[\dfrac{1}{x}=\dfrac{2}{1\pm \sqrt{3}i}\times \dfrac{1\mp \sqrt{3}i}{1\mp \sqrt{3}i}\]
\[\Rightarrow \dfrac{1}{x}=\dfrac{2\left( 1\mp \sqrt{3}i \right)}{{{\left( 1 \right)}^{2}}-{{\left( \sqrt{3}i \right)}^{2}}}\]
We can further simplify this as,
\[\dfrac{1}{x}=\dfrac{2\left( 1\mp \sqrt{3}i \right)}{1-\left( -3 \right)}\]
\[\Rightarrow \dfrac{1}{x}=\dfrac{1\mp \sqrt{3}i}{2}\]
Here, we can see that $x\text{ and }\dfrac{1}{x}$ are complex numbers. We also know that we can represent complex numbers as $z=r\cos \theta +ir\sin \theta $, where r is the magnitude.
For $x\text{ and }\dfrac{1}{x}$, the magnitudes are = $\sqrt{{{\left( \dfrac{1}{2} \right)}^{2}}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}}=\sqrt{\dfrac{1}{4}+\dfrac{3}{4}}=1$
Since, magnitude is 1, we can safely assume \[x=\cos \theta +i\sin \theta \], and so we can write
$\cos \theta +i\sin \theta =\dfrac{1}{2}\pm i\dfrac{\sqrt{3}}{2}$
Thus, we now have $\cos \theta =\dfrac{1}{2}\text{ and }\sin \theta =\pm \dfrac{\sqrt{3}}{2}$.
So, here we can conclude that $\theta =\pm \dfrac{\pi }{3}$ .
So, \[x=\cos \dfrac{\pi }{3}\pm i\sin \dfrac{\pi }{3}\text{ and }\dfrac{1}{x}=\cos \dfrac{\pi }{3}\mp i\sin \dfrac{\pi }{3}\].
We know that according to DeMoivre’s theorem, if $z=\cos \phi +i\sin \phi $ , then
${{z}^{n}}=\cos n\phi +i\sin n\phi $.
Using DeMoivre’s theorem, we get
$\begin{align}
& {{x}^{n}}=\cos \dfrac{n\pi }{3}\pm i\sin \dfrac{n\pi }{3} \\
& \dfrac{1}{{{x}^{n}}}=\cos \dfrac{n\pi }{3}\mp i\sin \dfrac{n\pi }{3} \\
\end{align}$
Adding these two equations, we get
${{x}^{n}}+\dfrac{1}{{{x}^{n}}}=2\cos \dfrac{n\pi }{3}$
On squaring both sides of the equation, we get
\[{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}={{\left( 2\cos \dfrac{n\pi }{3} \right)}^{2}}\]
\[\Rightarrow {{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}=4{{\cos }^{2}}\dfrac{n\pi }{3}\]
So, now we can easily write the equation
$\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=\sum\limits_{n=1}^{5}{\left( 4{{\cos }^{2}}\dfrac{n\pi }{3} \right)}$
The term 4 in the RHS part can be brought out of the summation,
$\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=4\sum\limits_{n=1}^{5}{\left( {{\cos }^{2}}\dfrac{n\pi }{3} \right)}$
To calculate this summation on the RHS part, we can expand it by putting different values of n,
$\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=4\left( {{\cos }^{2}}\dfrac{\pi }{3}+{{\cos }^{2}}\dfrac{2\pi }{3}+{{\cos }^{2}}\dfrac{3\pi }{3}+{{\cos }^{2}}\dfrac{4\pi }{3}+{{\cos }^{2}}\dfrac{5\pi }{3} \right)$
Now, from trigonometry, we know that
$\begin{align}
& \cos \dfrac{\pi }{3}=\dfrac{1}{2} \\
& \cos \dfrac{2\pi }{3}=-\dfrac{1}{2} \\
& \cos \dfrac{3\pi }{3}=-1 \\
& \cos \dfrac{4\pi }{3}=-\dfrac{1}{2} \\
& \cos \dfrac{5\pi }{3}=\dfrac{1}{2} \\
\end{align}$
Squaring each of these values, we get
$\begin{align}
& {{\cos }^{2}}\dfrac{\pi }{3}=\dfrac{1}{4} \\
& {{\cos }^{2}}\dfrac{2\pi }{3}=\dfrac{1}{4} \\
& {{\cos }^{2}}\dfrac{3\pi }{3}=1 \\
& {{\cos }^{2}}\dfrac{4\pi }{3}=\dfrac{1}{4} \\
& {{\cos }^{2}}\dfrac{5\pi }{3}=\dfrac{1}{4} \\
\end{align}$
Using these values in our original equation, we get
$\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=4\left( \dfrac{1}{4}+\dfrac{1}{4}+1+\dfrac{1}{4}+\dfrac{1}{4} \right)$
$\Rightarrow \sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=4\times 2$
$\Rightarrow \sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=8$
Thus, the value of $\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}$ is 8.
Note: We must remember that if magnitude of complex number is not 1, then, according to DeMoivre’s theorem, ${{\left[ r\left( \cos \phi +i\sin \phi \right) \right]}^{n}}={{r}^{n}}\left( \cos n\phi +i\sin n\phi \right)$. We must also note the difference between the two signs $\pm \text{ and }\mp $.
Complete step by step answer:
We are given with the quadratic equation ${{x}^{2}}-x+1=0$. Let us find the roots of this equation.
We know by the quadratic formula that the roots of the quadratic equation $a{{x}^{2}}+bx+c=0$ are $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.
So, here we will have
\[x=\dfrac{1\pm \sqrt{1-4}}{2}\]
\[\Rightarrow x=\dfrac{1\pm \sqrt{3}i}{2}\]
So, we can also write
\[\dfrac{1}{x}=\dfrac{2}{1\pm \sqrt{3}i}\]
We can simplify the above equation by rationalising as
\[\dfrac{1}{x}=\dfrac{2}{1\pm \sqrt{3}i}\times \dfrac{1\mp \sqrt{3}i}{1\mp \sqrt{3}i}\]
\[\Rightarrow \dfrac{1}{x}=\dfrac{2\left( 1\mp \sqrt{3}i \right)}{{{\left( 1 \right)}^{2}}-{{\left( \sqrt{3}i \right)}^{2}}}\]
We can further simplify this as,
\[\dfrac{1}{x}=\dfrac{2\left( 1\mp \sqrt{3}i \right)}{1-\left( -3 \right)}\]
\[\Rightarrow \dfrac{1}{x}=\dfrac{1\mp \sqrt{3}i}{2}\]
Here, we can see that $x\text{ and }\dfrac{1}{x}$ are complex numbers. We also know that we can represent complex numbers as $z=r\cos \theta +ir\sin \theta $, where r is the magnitude.
For $x\text{ and }\dfrac{1}{x}$, the magnitudes are = $\sqrt{{{\left( \dfrac{1}{2} \right)}^{2}}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}}=\sqrt{\dfrac{1}{4}+\dfrac{3}{4}}=1$
Since, magnitude is 1, we can safely assume \[x=\cos \theta +i\sin \theta \], and so we can write
$\cos \theta +i\sin \theta =\dfrac{1}{2}\pm i\dfrac{\sqrt{3}}{2}$
Thus, we now have $\cos \theta =\dfrac{1}{2}\text{ and }\sin \theta =\pm \dfrac{\sqrt{3}}{2}$.
So, here we can conclude that $\theta =\pm \dfrac{\pi }{3}$ .
So, \[x=\cos \dfrac{\pi }{3}\pm i\sin \dfrac{\pi }{3}\text{ and }\dfrac{1}{x}=\cos \dfrac{\pi }{3}\mp i\sin \dfrac{\pi }{3}\].
We know that according to DeMoivre’s theorem, if $z=\cos \phi +i\sin \phi $ , then
${{z}^{n}}=\cos n\phi +i\sin n\phi $.
Using DeMoivre’s theorem, we get
$\begin{align}
& {{x}^{n}}=\cos \dfrac{n\pi }{3}\pm i\sin \dfrac{n\pi }{3} \\
& \dfrac{1}{{{x}^{n}}}=\cos \dfrac{n\pi }{3}\mp i\sin \dfrac{n\pi }{3} \\
\end{align}$
Adding these two equations, we get
${{x}^{n}}+\dfrac{1}{{{x}^{n}}}=2\cos \dfrac{n\pi }{3}$
On squaring both sides of the equation, we get
\[{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}={{\left( 2\cos \dfrac{n\pi }{3} \right)}^{2}}\]
\[\Rightarrow {{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}=4{{\cos }^{2}}\dfrac{n\pi }{3}\]
So, now we can easily write the equation
$\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=\sum\limits_{n=1}^{5}{\left( 4{{\cos }^{2}}\dfrac{n\pi }{3} \right)}$
The term 4 in the RHS part can be brought out of the summation,
$\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=4\sum\limits_{n=1}^{5}{\left( {{\cos }^{2}}\dfrac{n\pi }{3} \right)}$
To calculate this summation on the RHS part, we can expand it by putting different values of n,
$\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=4\left( {{\cos }^{2}}\dfrac{\pi }{3}+{{\cos }^{2}}\dfrac{2\pi }{3}+{{\cos }^{2}}\dfrac{3\pi }{3}+{{\cos }^{2}}\dfrac{4\pi }{3}+{{\cos }^{2}}\dfrac{5\pi }{3} \right)$
Now, from trigonometry, we know that
$\begin{align}
& \cos \dfrac{\pi }{3}=\dfrac{1}{2} \\
& \cos \dfrac{2\pi }{3}=-\dfrac{1}{2} \\
& \cos \dfrac{3\pi }{3}=-1 \\
& \cos \dfrac{4\pi }{3}=-\dfrac{1}{2} \\
& \cos \dfrac{5\pi }{3}=\dfrac{1}{2} \\
\end{align}$
Squaring each of these values, we get
$\begin{align}
& {{\cos }^{2}}\dfrac{\pi }{3}=\dfrac{1}{4} \\
& {{\cos }^{2}}\dfrac{2\pi }{3}=\dfrac{1}{4} \\
& {{\cos }^{2}}\dfrac{3\pi }{3}=1 \\
& {{\cos }^{2}}\dfrac{4\pi }{3}=\dfrac{1}{4} \\
& {{\cos }^{2}}\dfrac{5\pi }{3}=\dfrac{1}{4} \\
\end{align}$
Using these values in our original equation, we get
$\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=4\left( \dfrac{1}{4}+\dfrac{1}{4}+1+\dfrac{1}{4}+\dfrac{1}{4} \right)$
$\Rightarrow \sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=4\times 2$
$\Rightarrow \sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}=8$
Thus, the value of $\sum\limits_{n=1}^{5}{{{\left( {{x}^{n}}+\dfrac{1}{{{x}^{n}}} \right)}^{2}}}$ is 8.
Note: We must remember that if magnitude of complex number is not 1, then, according to DeMoivre’s theorem, ${{\left[ r\left( \cos \phi +i\sin \phi \right) \right]}^{n}}={{r}^{n}}\left( \cos n\phi +i\sin n\phi \right)$. We must also note the difference between the two signs $\pm \text{ and }\mp $.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

