
If ${x^2} + x + 1 = 0$, then the value of ${\left( {x + \dfrac{1}{x}} \right)^2} + {\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right)^2} + ... + {\left( {{x^{27}} + \dfrac{1}{{{x^{27}}}}} \right)^2}$ is
A. 27
B. 72
C. 45
D. 54
Answer
542.4k+ views
Hint:Recall that ${x^3} - 1 = (x - 1)({x^2} + x + 1)$ , therefore, x is a cube−root of unity in the given equation. If $\omega $ is a cube−root of unity, then ${w^3} = 1 \Rightarrow {w^2} = \dfrac{1}{w}$ and ${w^2} + w + 1 = 0 \Rightarrow {w^2} + w = - 1$ . Reduce the higher powers to ${\omega ^2}$ and $\omega $, and evaluate. Observe that there are 27 groups of squared terms and their values will repeat in a fixed cycle.
Complete step by step solution:
From ${x^2} + x + 1 = 0$ , we know that the roots are $\omega $ and ${\omega ^2}$ such that ${w^2} + w + 1 = 0$ and ${\omega ^3} = 1$ .
It also means that ${w^2} = \dfrac{1}{w}$ . Therefore, ${w^4} = {w^3} \times w = w$ etc.
Now, the expression ${\left( {x + \dfrac{1}{x}} \right)^2} + {\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right)^2} + ...
+ {\left( {{x^{27}} + \dfrac{1}{{{x^{27}}}}} \right)^2}$ can be written as:
= ${\left( {\omega + {\omega ^2}} \right)^2} + {\left( {{\omega ^2} + \omega } \right)^2} + {\left(
{{\omega ^3} + {\omega ^3}} \right)^2} + {\left( {\omega + {\omega ^2}} \right)^2}$ + ... + ${\left(
{{\omega ^3} + {\omega ^3}} \right)^2}$ (27 terms)
Substituting ${\omega ^2} + \omega = - 1$ and ${\omega ^3} = 1$, we get:
= ${( - 1)^2} + {( - 1)^2} + {(4)^2} + {( - 1)^2}$ + ... + ${(4)^2}$ (27 terms)
Simplifying squares, we get,
= 1 + 1 + 4 + 1 + ... + 4 (27 terms)
Making triplets and combine, we get,
= (1 + 1 + 4) × 9
= 54
The correct answer is option D. 54.
Note: The question can also be solved as follows:
${x^2} + x + 1 = 0$
Dividing by x, we get:
$ \Rightarrow x + 1 + \dfrac{1}{x} = 0$
$ \Rightarrow x + \dfrac{1}{x} = - 1$ ... (1)
On squaring both sides, we get,
And, ${\left( {x + \dfrac{1}{x}} \right)^2} = {( - 1)^2}$
Expanding Identity, we get,
$ \Rightarrow {x^2} + \dfrac{1}{{{x^2}}} + 2 = 1$
$ \Rightarrow {x^2} + \dfrac{1}{{{x^2}}} = - 1$ ... (2)
And, ${\left( {x + \dfrac{1}{x}} \right)^3} = {( - 1)^3}$
Expanding identity, we get,
$ \Rightarrow {x^3} + \dfrac{1}{{{x^3}}} + 3\left( {x \times \dfrac{1}{x}} \right)\left( {x + \dfrac{1}{x}}
\right) = - 1$
$ \Rightarrow {x^3} + \dfrac{1}{{{x^3}}} + 3( - 1) = - 1$
$ \Rightarrow {x^3} + \dfrac{1}{{{x^3}}} = 2$ ... (3)
And,
${x^4} + \dfrac{1}{{{x^4}}} = {\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right)^2} - 2 = 1 - 2 = - 1$ ...(4)
And,
$\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right)\left( {{x^3} + \dfrac{1}{{{x^3}}}} \right) = {x^5} + \dfrac{1}{x} + x + \dfrac{1}{{{x^5}}}$
⇒ ${x^5} + \dfrac{1}{{{x^5}}} = ( - 1) \times 2 + 1 = - 1$ ... (5)
And so on.
But this method is not advised because it is hard to generalize a pattern here.
The three cube−roots of the unity (1) are: $w = \dfrac{{ - 1 + i\sqrt 3 }}{2}$, ${\omega ^2} = \dfrac{{ - 1 - i\sqrt 3 }}{2}$ and 1.
Complete step by step solution:
From ${x^2} + x + 1 = 0$ , we know that the roots are $\omega $ and ${\omega ^2}$ such that ${w^2} + w + 1 = 0$ and ${\omega ^3} = 1$ .
It also means that ${w^2} = \dfrac{1}{w}$ . Therefore, ${w^4} = {w^3} \times w = w$ etc.
Now, the expression ${\left( {x + \dfrac{1}{x}} \right)^2} + {\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right)^2} + ...
+ {\left( {{x^{27}} + \dfrac{1}{{{x^{27}}}}} \right)^2}$ can be written as:
= ${\left( {\omega + {\omega ^2}} \right)^2} + {\left( {{\omega ^2} + \omega } \right)^2} + {\left(
{{\omega ^3} + {\omega ^3}} \right)^2} + {\left( {\omega + {\omega ^2}} \right)^2}$ + ... + ${\left(
{{\omega ^3} + {\omega ^3}} \right)^2}$ (27 terms)
Substituting ${\omega ^2} + \omega = - 1$ and ${\omega ^3} = 1$, we get:
= ${( - 1)^2} + {( - 1)^2} + {(4)^2} + {( - 1)^2}$ + ... + ${(4)^2}$ (27 terms)
Simplifying squares, we get,
= 1 + 1 + 4 + 1 + ... + 4 (27 terms)
Making triplets and combine, we get,
= (1 + 1 + 4) × 9
= 54
The correct answer is option D. 54.
Note: The question can also be solved as follows:
${x^2} + x + 1 = 0$
Dividing by x, we get:
$ \Rightarrow x + 1 + \dfrac{1}{x} = 0$
$ \Rightarrow x + \dfrac{1}{x} = - 1$ ... (1)
On squaring both sides, we get,
And, ${\left( {x + \dfrac{1}{x}} \right)^2} = {( - 1)^2}$
Expanding Identity, we get,
$ \Rightarrow {x^2} + \dfrac{1}{{{x^2}}} + 2 = 1$
$ \Rightarrow {x^2} + \dfrac{1}{{{x^2}}} = - 1$ ... (2)
And, ${\left( {x + \dfrac{1}{x}} \right)^3} = {( - 1)^3}$
Expanding identity, we get,
$ \Rightarrow {x^3} + \dfrac{1}{{{x^3}}} + 3\left( {x \times \dfrac{1}{x}} \right)\left( {x + \dfrac{1}{x}}
\right) = - 1$
$ \Rightarrow {x^3} + \dfrac{1}{{{x^3}}} + 3( - 1) = - 1$
$ \Rightarrow {x^3} + \dfrac{1}{{{x^3}}} = 2$ ... (3)
And,
${x^4} + \dfrac{1}{{{x^4}}} = {\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right)^2} - 2 = 1 - 2 = - 1$ ...(4)
And,
$\left( {{x^2} + \dfrac{1}{{{x^2}}}} \right)\left( {{x^3} + \dfrac{1}{{{x^3}}}} \right) = {x^5} + \dfrac{1}{x} + x + \dfrac{1}{{{x^5}}}$
⇒ ${x^5} + \dfrac{1}{{{x^5}}} = ( - 1) \times 2 + 1 = - 1$ ... (5)
And so on.
But this method is not advised because it is hard to generalize a pattern here.
The three cube−roots of the unity (1) are: $w = \dfrac{{ - 1 + i\sqrt 3 }}{2}$, ${\omega ^2} = \dfrac{{ - 1 - i\sqrt 3 }}{2}$ and 1.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

