
If ${{x}^{2}}+6x-27>0$ and $-{{x}^{2}}+3x+4>0$, then $x$ lies in interval –
(a) $\left( 3,4 \right)$
(b) $\left[ 3,4 \right]$
(c) $\left( -\infty ,3 \right)\cup \left( 4,\infty \right)$
(d) $\left( -9,4 \right)$
Answer
585.9k+ views
Hint:This question involves inequality. We have to find the value of $x$ that satisfies both the inequalities. By following the concept of inequality, we will solve for an interval of $x$.
Complete step by step answer:
Concept: Let a polynomial $p\left( x \right)$is given –
$p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)$
Firstly we find the critical points by solving for $p\left( x \right)=0$.
$\left( x-\alpha \right)\left( x-\beta \right)=0$
$\Rightarrow x=\alpha $and $\Rightarrow x=\beta $.
Let $\beta >\alpha $. So,
For $x>\beta $. As $\left( x-\beta \right)$ and $\left( x-\alpha \right)$ will be positive, so \[p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)\] will be positive.
For $\alpha < x<\beta $. As $\left( x-\beta \right)$ will be negative and $\left( x-\alpha \right)$ will be positive, so $p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)$ will be negative.
For $x<\alpha $, As $\left( x-\beta \right)$ and $\left( x-\alpha \right)$ both will be negative, then \[p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)\] will be positive.
So for, \[p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)>0\]
$\Rightarrow x\in \left( -\infty ,\alpha \right)\cup \left( \beta ,\infty \right)$
And for, \[p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)<0\]
$\Rightarrow x\in \left( \alpha ,\beta \right)$
Now for inequality (i),
${{x}^{2}}+6x-27>0$
$\Rightarrow {{x}^{2}}+9x-3x-27>0$
$\Rightarrow x\left( x+9 \right)-3\left( x+9 \right)>0$
$\Rightarrow \left( x-3 \right)\left( x+9 \right)>0$
Let us assume $p\left( x \right)=\left( x-3 \right)\left( x+9 \right)$ for critical points.
$p\left( x \right)=0$
$\Rightarrow \left( x-3 \right)\left( x+9 \right)=0$
$x=3$ and $x=-9$
For $x>3$,
\[p\left( x \right)=\left( x-3 \right)\left( x+9 \right)>0\]
For $-9< x<3$,
\[p\left( x \right)=\left( x-3 \right)\left( x+9 \right)<0\]
For $x<-9$,
\[p\left( x \right)=\left( x-3 \right)\left( x+9 \right)>0\]
So for \[\left( x-3 \right)\left( x+9 \right)>0\],
$\Rightarrow x\in \left( -\infty ,-9 \right)\cup \left( 3,\infty \right)$
Now for inequality (ii),
$-{{x}^{2}}+3x+4>0$
$\Rightarrow -\left( {{x}^{2}}-3x-4 \right)>0$
By multiplying $\left( -1 \right)$on both sides, inequality sign will change.
$\Rightarrow \left( {{x}^{2}}-3x-4 \right)<0$
$\Rightarrow x\left( x-4 \right)+\left( x-4 \right)<0$
$\Rightarrow \left( x-4 \right)\left( x+1 \right)<0$
Let us assume $q\left( x \right)=\left( x+1 \right)\left( x-4 \right)$. So for critical points, $q\left( x \right)=0$
$\left( x+1 \right)\left( x-4 \right)=0$
$\Rightarrow x=-1$ and $x=4$
For $x>4$,
$q\left( x \right)=\left( x+1 \right)\left( x-4 \right)>0$
For $-1< x<4$,
$q\left( x \right)=\left( x+1 \right)\left( x-4 \right)<0$
For $x<-1$,
$q\left( x \right)=\left( x+1 \right)\left( x-4 \right)<0$
So for, $q\left( x \right)=\left( x+1 \right)\left( x-4 \right)<0$
$\Rightarrow x\in \left( -1,4 \right)$
Now for an interval of $x$, we have to take the intersection of $x's$ interval for inequality (i) and inequality(ii).
For inequality (i),
For inequality (ii),
So, the intersection of both intervals –
Hence, $x\in \left( 3,4 \right)$, and the correct option is (a).
Note:
In this question, we have to solve inequality. So we have to take care of the inequality sign. If we multiply negative value on both sides of the inequality sign, then the inequality sign will definitely change. So students should keep in mind this property.
Complete step by step answer:
Concept: Let a polynomial $p\left( x \right)$is given –
$p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)$
Firstly we find the critical points by solving for $p\left( x \right)=0$.
$\left( x-\alpha \right)\left( x-\beta \right)=0$
$\Rightarrow x=\alpha $and $\Rightarrow x=\beta $.
Let $\beta >\alpha $. So,
For $x>\beta $. As $\left( x-\beta \right)$ and $\left( x-\alpha \right)$ will be positive, so \[p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)\] will be positive.
For $\alpha < x<\beta $. As $\left( x-\beta \right)$ will be negative and $\left( x-\alpha \right)$ will be positive, so $p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)$ will be negative.
For $x<\alpha $, As $\left( x-\beta \right)$ and $\left( x-\alpha \right)$ both will be negative, then \[p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)\] will be positive.
So for, \[p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)>0\]
$\Rightarrow x\in \left( -\infty ,\alpha \right)\cup \left( \beta ,\infty \right)$
And for, \[p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)<0\]
$\Rightarrow x\in \left( \alpha ,\beta \right)$
Now for inequality (i),
${{x}^{2}}+6x-27>0$
$\Rightarrow {{x}^{2}}+9x-3x-27>0$
$\Rightarrow x\left( x+9 \right)-3\left( x+9 \right)>0$
$\Rightarrow \left( x-3 \right)\left( x+9 \right)>0$
Let us assume $p\left( x \right)=\left( x-3 \right)\left( x+9 \right)$ for critical points.
$p\left( x \right)=0$
$\Rightarrow \left( x-3 \right)\left( x+9 \right)=0$
$x=3$ and $x=-9$
For $x>3$,
\[p\left( x \right)=\left( x-3 \right)\left( x+9 \right)>0\]
For $-9< x<3$,
\[p\left( x \right)=\left( x-3 \right)\left( x+9 \right)<0\]
For $x<-9$,
\[p\left( x \right)=\left( x-3 \right)\left( x+9 \right)>0\]
So for \[\left( x-3 \right)\left( x+9 \right)>0\],
$\Rightarrow x\in \left( -\infty ,-9 \right)\cup \left( 3,\infty \right)$
Now for inequality (ii),
$-{{x}^{2}}+3x+4>0$
$\Rightarrow -\left( {{x}^{2}}-3x-4 \right)>0$
By multiplying $\left( -1 \right)$on both sides, inequality sign will change.
$\Rightarrow \left( {{x}^{2}}-3x-4 \right)<0$
$\Rightarrow x\left( x-4 \right)+\left( x-4 \right)<0$
$\Rightarrow \left( x-4 \right)\left( x+1 \right)<0$
Let us assume $q\left( x \right)=\left( x+1 \right)\left( x-4 \right)$. So for critical points, $q\left( x \right)=0$
$\left( x+1 \right)\left( x-4 \right)=0$
$\Rightarrow x=-1$ and $x=4$
For $x>4$,
$q\left( x \right)=\left( x+1 \right)\left( x-4 \right)>0$
For $-1< x<4$,
$q\left( x \right)=\left( x+1 \right)\left( x-4 \right)<0$
For $x<-1$,
$q\left( x \right)=\left( x+1 \right)\left( x-4 \right)<0$
So for, $q\left( x \right)=\left( x+1 \right)\left( x-4 \right)<0$
$\Rightarrow x\in \left( -1,4 \right)$
Now for an interval of $x$, we have to take the intersection of $x's$ interval for inequality (i) and inequality(ii).
For inequality (i),
For inequality (ii),
So, the intersection of both intervals –
Hence, $x\in \left( 3,4 \right)$, and the correct option is (a).
Note:
In this question, we have to solve inequality. So we have to take care of the inequality sign. If we multiply negative value on both sides of the inequality sign, then the inequality sign will definitely change. So students should keep in mind this property.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

