Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

If ${{x}^{2}}+6x-27>0$ and $-{{x}^{2}}+3x+4>0$, then $x$ lies in interval –

(a) $\left( 3,4 \right)$
(b) $\left[ 3,4 \right]$
(c) $\left( -\infty ,3 \right)\cup \left( 4,\infty \right)$
(d) $\left( -9,4 \right)$

Answer
VerifiedVerified
571.8k+ views
Hint:This question involves inequality. We have to find the value of $x$ that satisfies both the inequalities. By following the concept of inequality, we will solve for an interval of $x$.

Complete step by step answer:
Concept: Let a polynomial $p\left( x \right)$is given –
$p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)$
Firstly we find the critical points by solving for $p\left( x \right)=0$.
$\left( x-\alpha \right)\left( x-\beta \right)=0$
$\Rightarrow x=\alpha $and $\Rightarrow x=\beta $.

Let $\beta >\alpha $. So,

seo images


For $x>\beta $. As $\left( x-\beta \right)$ and $\left( x-\alpha \right)$ will be positive, so \[p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)\] will be positive.

For $\alpha < x<\beta $. As $\left( x-\beta \right)$ will be negative and $\left( x-\alpha \right)$ will be positive, so $p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)$ will be negative.

For $x<\alpha $, As $\left( x-\beta \right)$ and $\left( x-\alpha \right)$ both will be negative, then \[p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)\] will be positive.
So for, \[p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)>0\]
$\Rightarrow x\in \left( -\infty ,\alpha \right)\cup \left( \beta ,\infty \right)$
And for, \[p\left( x \right)=\left( x-\alpha \right)\left( x-\beta \right)<0\]
$\Rightarrow x\in \left( \alpha ,\beta \right)$

Now for inequality (i),
${{x}^{2}}+6x-27>0$
$\Rightarrow {{x}^{2}}+9x-3x-27>0$
$\Rightarrow x\left( x+9 \right)-3\left( x+9 \right)>0$
$\Rightarrow \left( x-3 \right)\left( x+9 \right)>0$

Let us assume $p\left( x \right)=\left( x-3 \right)\left( x+9 \right)$ for critical points.
$p\left( x \right)=0$
$\Rightarrow \left( x-3 \right)\left( x+9 \right)=0$
$x=3$ and $x=-9$



For $x>3$,
\[p\left( x \right)=\left( x-3 \right)\left( x+9 \right)>0\]

For $-9< x<3$,
\[p\left( x \right)=\left( x-3 \right)\left( x+9 \right)<0\]

For $x<-9$,
\[p\left( x \right)=\left( x-3 \right)\left( x+9 \right)>0\]

So for \[\left( x-3 \right)\left( x+9 \right)>0\],
$\Rightarrow x\in \left( -\infty ,-9 \right)\cup \left( 3,\infty \right)$

Now for inequality (ii),
$-{{x}^{2}}+3x+4>0$
$\Rightarrow -\left( {{x}^{2}}-3x-4 \right)>0$
By multiplying $\left( -1 \right)$on both sides, inequality sign will change.
$\Rightarrow \left( {{x}^{2}}-3x-4 \right)<0$
$\Rightarrow x\left( x-4 \right)+\left( x-4 \right)<0$
$\Rightarrow \left( x-4 \right)\left( x+1 \right)<0$

Let us assume $q\left( x \right)=\left( x+1 \right)\left( x-4 \right)$. So for critical points, $q\left( x \right)=0$
$\left( x+1 \right)\left( x-4 \right)=0$
$\Rightarrow x=-1$ and $x=4$

seo images


For $x>4$,
$q\left( x \right)=\left( x+1 \right)\left( x-4 \right)>0$

For $-1< x<4$,
$q\left( x \right)=\left( x+1 \right)\left( x-4 \right)<0$

For $x<-1$,
$q\left( x \right)=\left( x+1 \right)\left( x-4 \right)<0$

So for, $q\left( x \right)=\left( x+1 \right)\left( x-4 \right)<0$
$\Rightarrow x\in \left( -1,4 \right)$

Now for an interval of $x$, we have to take the intersection of $x's$ interval for inequality (i) and inequality(ii).
For inequality (i),


seo images


For inequality (ii),

seo images


So, the intersection of both intervals –

seo images


Hence, $x\in \left( 3,4 \right)$, and the correct option is (a).

Note:
 In this question, we have to solve inequality. So we have to take care of the inequality sign. If we multiply negative value on both sides of the inequality sign, then the inequality sign will definitely change. So students should keep in mind this property.