
If $x=1+a+{{a}^{2}}+{{a}^{3}}+...$ and $y=1+b+{{b}^{2}}+{{b}^{3}}+...$, then show that $1+ab+{{a}^{2}}{{b}^{2}}+{{a}^{3}}{{b}^{3}}+...=\dfrac{xy}{x+y-1}$
Answer
518.7k+ views
Hint:By using binomial theorem we can write $x={{\left( 1-a \right)}^{-1}},y={{\left( 1-b \right)}^{-1}}$.Now check if $\dfrac{xy}{x+y-1}$ is ${{\left( 1-ab \right)}^{-1}}$ or not, by substituting the values of x and y.
Complete step by step answer:
The binomial theorem is the method of expanding an expression which has been raised to any finite power.
We know that the general form of binomial expansion for negative integer power is,
${{\left( 1-x \right)}^{-n}}=1+nx+\dfrac{n\left( n+1 \right)}{1\times 2}{{x}^{2}}+\dfrac{n\left( n+1 \right)\left( n+2 \right)}{1\times 2\times 3}{{x}^{3}}+...$
It is an infinite series. For this problem, $n=1$.
Therefore,
${{\left( 1-x \right)}^{-1}}=1+1\times x+\dfrac{1\times \left( 1+1 \right)}{1\times 2}{{x}^{2}}+\dfrac{1\times \left( 1+1 \right)\times \left( 1+2 \right)}{1\times 2\times 3}{{x}^{3}}+...$
$\Rightarrow {{\left( 1-x \right)}^{-1}}=1+x+{{x}^{2}}+{{x}^{3}}+...$
By using binomial theorem for negative integer power we can write,
$x={{\left( 1-a \right)}^{-1}}\Rightarrow x=\dfrac{1}{1-a}......(1)$
Similarly,
$y={{\left( 1-b \right)}^{-1}}\Rightarrow y=\dfrac{1}{1-b}.......(2)$
Now let us multiply equation (1) by equation (2).
$xy=\dfrac{1}{1-a}\times \dfrac{1}{1-b}=\dfrac{1}{\left( 1-a \right)\left( 1-b \right)}......(3)$
If we add equation (1) and equation (2) we will get,
$x+y=\dfrac{1}{1-a}+\dfrac{1}{1-b}$
$\Rightarrow x+y=\dfrac{1-b+1-a}{\left( 1-a \right)\left( 1-b \right)}$
$\Rightarrow x+y=\dfrac{2-a-b}{\left( 1-a \right)\left( 1-b \right)}......(4)$
Now if we subtract 1 from both the sides of equation (3) we will get,
$x+y-1=\dfrac{2-a-b}{\left( 1-a \right)\left( 1-b \right)}-1$
$\Rightarrow x+y-1=\dfrac{2-a-b-\left( 1-a \right)\left( 1-b \right)}{\left( 1-a \right)\left( 1-b \right)}$
Now put $\left( 1-a \right)\left( 1-b \right)=1-a-b+ab$ in the above expression.
$\Rightarrow x+y-1=\dfrac{2-a-b-\left( 1-a-b+ab \right)}{\left( 1-a \right)\left( 1-b \right)}$
$\Rightarrow x+y-1=\dfrac{2-a-b-1+a+b-ab}{\left( 1-a \right)\left( 1-b \right)}$
We can cancel out a few terms from the numerator. Therefore,
$\Rightarrow x+y-1=\dfrac{1-ab}{\left( 1-a \right)\left( 1-b \right)}......(5)$
Now we will divide equation (3) by equation (5).
$\dfrac{xy}{x+y-1}=\dfrac{\dfrac{1}{\left( 1-a \right)\left( 1-b \right)}}{\dfrac{1-ab}{\left( 1-a \right)\left( 1-b \right)}}$
$\Rightarrow \dfrac{xy}{x+y-1}=\dfrac{1}{\left( 1-a \right)\left( 1-b \right)}\times \dfrac{\left( 1-a \right)\left( 1-b \right)}{1-ab}$
We can cancel out the common terms from the numerator and the denominator.
$\Rightarrow \dfrac{xy}{x+y-1}=\dfrac{1}{1-ab}$
$\Rightarrow \dfrac{xy}{x+y-1}={{\left( 1-ab \right)}^{-1}}$
By using binomial expansion for negative integer power we can write,
$\Rightarrow \dfrac{xy}{x+y-1}=1+ab+{{a}^{2}}{{b}^{2}}+{{a}^{3}}{{b}^{3}}+...$
Therefore,
$1+ab+{{a}^{2}}{{b}^{2}}+{{a}^{3}}{{b}^{3}}+...=\dfrac{xy}{x+y-1}$
Note: In this problem it is very important to use the concept of Binomial Theorem. It will make the solution easier. If we try to solve it directly, that means if we put the values of x and y on the right hand side, then the multiplications will be huge and complicated as both the values of x and y are infinite series.
Complete step by step answer:
The binomial theorem is the method of expanding an expression which has been raised to any finite power.
We know that the general form of binomial expansion for negative integer power is,
${{\left( 1-x \right)}^{-n}}=1+nx+\dfrac{n\left( n+1 \right)}{1\times 2}{{x}^{2}}+\dfrac{n\left( n+1 \right)\left( n+2 \right)}{1\times 2\times 3}{{x}^{3}}+...$
It is an infinite series. For this problem, $n=1$.
Therefore,
${{\left( 1-x \right)}^{-1}}=1+1\times x+\dfrac{1\times \left( 1+1 \right)}{1\times 2}{{x}^{2}}+\dfrac{1\times \left( 1+1 \right)\times \left( 1+2 \right)}{1\times 2\times 3}{{x}^{3}}+...$
$\Rightarrow {{\left( 1-x \right)}^{-1}}=1+x+{{x}^{2}}+{{x}^{3}}+...$
By using binomial theorem for negative integer power we can write,
$x={{\left( 1-a \right)}^{-1}}\Rightarrow x=\dfrac{1}{1-a}......(1)$
Similarly,
$y={{\left( 1-b \right)}^{-1}}\Rightarrow y=\dfrac{1}{1-b}.......(2)$
Now let us multiply equation (1) by equation (2).
$xy=\dfrac{1}{1-a}\times \dfrac{1}{1-b}=\dfrac{1}{\left( 1-a \right)\left( 1-b \right)}......(3)$
If we add equation (1) and equation (2) we will get,
$x+y=\dfrac{1}{1-a}+\dfrac{1}{1-b}$
$\Rightarrow x+y=\dfrac{1-b+1-a}{\left( 1-a \right)\left( 1-b \right)}$
$\Rightarrow x+y=\dfrac{2-a-b}{\left( 1-a \right)\left( 1-b \right)}......(4)$
Now if we subtract 1 from both the sides of equation (3) we will get,
$x+y-1=\dfrac{2-a-b}{\left( 1-a \right)\left( 1-b \right)}-1$
$\Rightarrow x+y-1=\dfrac{2-a-b-\left( 1-a \right)\left( 1-b \right)}{\left( 1-a \right)\left( 1-b \right)}$
Now put $\left( 1-a \right)\left( 1-b \right)=1-a-b+ab$ in the above expression.
$\Rightarrow x+y-1=\dfrac{2-a-b-\left( 1-a-b+ab \right)}{\left( 1-a \right)\left( 1-b \right)}$
$\Rightarrow x+y-1=\dfrac{2-a-b-1+a+b-ab}{\left( 1-a \right)\left( 1-b \right)}$
We can cancel out a few terms from the numerator. Therefore,
$\Rightarrow x+y-1=\dfrac{1-ab}{\left( 1-a \right)\left( 1-b \right)}......(5)$
Now we will divide equation (3) by equation (5).
$\dfrac{xy}{x+y-1}=\dfrac{\dfrac{1}{\left( 1-a \right)\left( 1-b \right)}}{\dfrac{1-ab}{\left( 1-a \right)\left( 1-b \right)}}$
$\Rightarrow \dfrac{xy}{x+y-1}=\dfrac{1}{\left( 1-a \right)\left( 1-b \right)}\times \dfrac{\left( 1-a \right)\left( 1-b \right)}{1-ab}$
We can cancel out the common terms from the numerator and the denominator.
$\Rightarrow \dfrac{xy}{x+y-1}=\dfrac{1}{1-ab}$
$\Rightarrow \dfrac{xy}{x+y-1}={{\left( 1-ab \right)}^{-1}}$
By using binomial expansion for negative integer power we can write,
$\Rightarrow \dfrac{xy}{x+y-1}=1+ab+{{a}^{2}}{{b}^{2}}+{{a}^{3}}{{b}^{3}}+...$
Therefore,
$1+ab+{{a}^{2}}{{b}^{2}}+{{a}^{3}}{{b}^{3}}+...=\dfrac{xy}{x+y-1}$
Note: In this problem it is very important to use the concept of Binomial Theorem. It will make the solution easier. If we try to solve it directly, that means if we put the values of x and y on the right hand side, then the multiplications will be huge and complicated as both the values of x and y are infinite series.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
