
If $x = y\cos \dfrac{{2\pi }}{3} = z\cos \dfrac{{4\pi }}{3}$ , then xy + yz + zx is equal to
A.-1
B.0
C.1
D.2
Answer
585.3k+ views
Hint: First, simplify the given equation $x = y\cos \dfrac{{2\pi }}{3} = z\cos \dfrac{{4\pi }}{3}$ by converting the trigonometric functions into their respective values.
Now, when we get a relation between x, y and z, substitute the values in the equation xy + yz + zx, to get the answer.
Complete step-by-step answer:
It is given that, $x = y\cos \dfrac{{2\pi }}{3} = z\cos \dfrac{{4\pi }}{3}$ .
Now, first, let’s simplify $\cos \dfrac{{2\pi }}{3}$ and $\cos \dfrac{{4\pi }}{3}$ .
\[
\cos \dfrac{{2\pi }}{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right) \\
= - \cos \dfrac{\pi }{3} \\
= - \dfrac{1}{2} \\
\]
And
$
\cos \dfrac{{4\pi }}{3} = \cos \left( {\pi + \dfrac{\pi }{3}} \right) \\
= - \cos \dfrac{\pi }{3} \\
= - \dfrac{1}{2} \\
$
Now, substituting $\cos \dfrac{{2\pi }}{3} = - \dfrac{1}{2}$ and $\cos \dfrac{{4\pi }}{3} = - \dfrac{1}{2}$ in $x = y\cos \dfrac{{2\pi }}{3} = z\cos \dfrac{{4\pi }}{3}$ gives
$
\therefore x = y\left( { - \dfrac{1}{2}} \right) = z\left( { - \dfrac{1}{2}} \right) \\
\therefore x = - \dfrac{y}{2} = - \dfrac{z}{2} \\
\therefore - 2x = y = z \\
$
Thus, we get \[y = z = - 2x\] .
We have to find xy + yz + zx.
$\therefore $ xy + yz + zx \[ = x\left( { - 2x} \right) + \left( { - 2x} \right)\left( { - 2x} \right) + x\left( { - 2x} \right)\] \[(y = z = - 2x)\]
$ = - 2{x^2} + 4{x^2} - 2{x^2}$
= 0
Thus, xy + yz + zx = 0.
Note: Here, $\cos \dfrac{{2\pi }}{3} = - \dfrac{1}{2}$ because $\cos \dfrac{{2\pi }}{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right)$ lies in quadrant 2 and in quadrant 2, the value of any $\cos \theta $ is negative.
Also, $\cos \dfrac{{4\pi }}{3} = - \dfrac{1}{2}$ because $\cos \dfrac{{4\pi }}{3} = \cos \left( {\pi + \dfrac{\pi }{3}} \right)$ lies in quadrant 3 and in quadrant 3, the value of any $\cos \theta $ is negative.
Now, when we get a relation between x, y and z, substitute the values in the equation xy + yz + zx, to get the answer.
Complete step-by-step answer:
It is given that, $x = y\cos \dfrac{{2\pi }}{3} = z\cos \dfrac{{4\pi }}{3}$ .
Now, first, let’s simplify $\cos \dfrac{{2\pi }}{3}$ and $\cos \dfrac{{4\pi }}{3}$ .
\[
\cos \dfrac{{2\pi }}{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right) \\
= - \cos \dfrac{\pi }{3} \\
= - \dfrac{1}{2} \\
\]
And
$
\cos \dfrac{{4\pi }}{3} = \cos \left( {\pi + \dfrac{\pi }{3}} \right) \\
= - \cos \dfrac{\pi }{3} \\
= - \dfrac{1}{2} \\
$
Now, substituting $\cos \dfrac{{2\pi }}{3} = - \dfrac{1}{2}$ and $\cos \dfrac{{4\pi }}{3} = - \dfrac{1}{2}$ in $x = y\cos \dfrac{{2\pi }}{3} = z\cos \dfrac{{4\pi }}{3}$ gives
$
\therefore x = y\left( { - \dfrac{1}{2}} \right) = z\left( { - \dfrac{1}{2}} \right) \\
\therefore x = - \dfrac{y}{2} = - \dfrac{z}{2} \\
\therefore - 2x = y = z \\
$
Thus, we get \[y = z = - 2x\] .
We have to find xy + yz + zx.
$\therefore $ xy + yz + zx \[ = x\left( { - 2x} \right) + \left( { - 2x} \right)\left( { - 2x} \right) + x\left( { - 2x} \right)\] \[(y = z = - 2x)\]
$ = - 2{x^2} + 4{x^2} - 2{x^2}$
= 0
Thus, xy + yz + zx = 0.
Note: Here, $\cos \dfrac{{2\pi }}{3} = - \dfrac{1}{2}$ because $\cos \dfrac{{2\pi }}{3} = \cos \left( {\pi - \dfrac{\pi }{3}} \right)$ lies in quadrant 2 and in quadrant 2, the value of any $\cos \theta $ is negative.
Also, $\cos \dfrac{{4\pi }}{3} = - \dfrac{1}{2}$ because $\cos \dfrac{{4\pi }}{3} = \cos \left( {\pi + \dfrac{\pi }{3}} \right)$ lies in quadrant 3 and in quadrant 3, the value of any $\cos \theta $ is negative.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

