
If x, y, z are positive real numbers and a, b, c are rational numbers, then the value of $\dfrac{1}{{1 + {x^{b - a}} + {x^{c - a}}}} + \dfrac{1}{{1 + {x^{a - b}} + {x^{c - b}}}} + \dfrac{1}{{1 + {x^{b - c}} + {x^{a - c}}}}$ is
A) -1
B) 0
C) 1
D) None of the above
Answer
566.7k+ views
Hint:
Firstly, simplify the terms in the form of ${x^{p - q}}$ as $\dfrac{{{x^p}}}{{{x^q}}}$ , where p, q = a, b, c as required.
Then, take the LCM in the denominators and simplify it further.
Thus, we get the required answer.
Complete step by step solution:
It is given that, x, y, z are positive real numbers and a, b, c are rational numbers.
Now, we are asked to find the value of $\dfrac{1}{{1 + {x^{b - a}} + {x^{c - a}}}} + \dfrac{1}{{1 + {x^{a - b}} + {x^{c - b}}}} + \dfrac{1}{{1 + {x^{b - c}} + {x^{a - c}}}}$ .
We can write $\dfrac{1}{{1 + {x^{b - a}} + {x^{c - a}}}} + \dfrac{1}{{1 + {x^{a - b}} + {x^{c - b}}}} + \dfrac{1}{{1 + {x^{b - c}} + {x^{a - c}}}}$ as
$\dfrac{1}{{1 + {x^{b - a}} + {x^{c - a}}}} + \dfrac{1}{{1 + {x^{a - b}} + {x^{c - b}}}} + \dfrac{1}{{1 + {x^{b - c}} + {x^{a - c}}}} = \dfrac{1}{{1 + \dfrac{{{x^b}}}{{{x^a}}} + \dfrac{{{x^c}}}{{{x^a}}}}} + \dfrac{1}{{1 + \dfrac{{{x^a}}}{{{x^b}}} + \dfrac{{{x^c}}}{{{x^b}}}}} + \dfrac{1}{{1 + \dfrac{{{x^b}}}{{{x^c}}} + \dfrac{{{x^a}}}{{{x^c}}}}}$
$
= \dfrac{1}{{\dfrac{{{x^a} + {x^b} + {x^c}}}{{{x^a}}}}} + \dfrac{1}{{\dfrac{{{x^a} + {x^b} + {x^c}}}{{{x^b}}}}} + \dfrac{1}{{\dfrac{{{x^a} + {x^b} + {x^c}}}{{{x^b}}}}} \\
= \dfrac{{{x^a}}}{{{x^a} + {x^b} + {x^c}}} + \dfrac{{{x^b}}}{{{x^a} + {x^b} + {x^c}}} + \dfrac{{{x^c}}}{{{x^a} + {x^b} + {x^c}}} \\
= \dfrac{{{x^a} + {x^b} + {x^c}}}{{{x^a} + {x^b} + {x^c}}} \\
= 1 \\
$
Thus, we get the value of $\dfrac{1}{{1 + {x^{b - a}} + {x^{c - a}}}} + \dfrac{1}{{1 + {x^{a - b}} + {x^{c - b}}}} + \dfrac{1}{{1 + {x^{b - c}} + {x^{a - c}}}}$ as 1.
Note:
Some properties of exponents and powers:
1) \[{a^{m + n}} = {a^m} \cdot {a^n}\]
2) \[{a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}\]
3) \[\dfrac{1}{{{a^n}}} = {a^{ - n}}\]
4) \[{a^n}{b^n} = {\left( {ab} \right)^n}\]
5) $\sqrt[n]{a} = {a^{\dfrac{1}{n}}}$
Firstly, simplify the terms in the form of ${x^{p - q}}$ as $\dfrac{{{x^p}}}{{{x^q}}}$ , where p, q = a, b, c as required.
Then, take the LCM in the denominators and simplify it further.
Thus, we get the required answer.
Complete step by step solution:
It is given that, x, y, z are positive real numbers and a, b, c are rational numbers.
Now, we are asked to find the value of $\dfrac{1}{{1 + {x^{b - a}} + {x^{c - a}}}} + \dfrac{1}{{1 + {x^{a - b}} + {x^{c - b}}}} + \dfrac{1}{{1 + {x^{b - c}} + {x^{a - c}}}}$ .
We can write $\dfrac{1}{{1 + {x^{b - a}} + {x^{c - a}}}} + \dfrac{1}{{1 + {x^{a - b}} + {x^{c - b}}}} + \dfrac{1}{{1 + {x^{b - c}} + {x^{a - c}}}}$ as
$\dfrac{1}{{1 + {x^{b - a}} + {x^{c - a}}}} + \dfrac{1}{{1 + {x^{a - b}} + {x^{c - b}}}} + \dfrac{1}{{1 + {x^{b - c}} + {x^{a - c}}}} = \dfrac{1}{{1 + \dfrac{{{x^b}}}{{{x^a}}} + \dfrac{{{x^c}}}{{{x^a}}}}} + \dfrac{1}{{1 + \dfrac{{{x^a}}}{{{x^b}}} + \dfrac{{{x^c}}}{{{x^b}}}}} + \dfrac{1}{{1 + \dfrac{{{x^b}}}{{{x^c}}} + \dfrac{{{x^a}}}{{{x^c}}}}}$
$
= \dfrac{1}{{\dfrac{{{x^a} + {x^b} + {x^c}}}{{{x^a}}}}} + \dfrac{1}{{\dfrac{{{x^a} + {x^b} + {x^c}}}{{{x^b}}}}} + \dfrac{1}{{\dfrac{{{x^a} + {x^b} + {x^c}}}{{{x^b}}}}} \\
= \dfrac{{{x^a}}}{{{x^a} + {x^b} + {x^c}}} + \dfrac{{{x^b}}}{{{x^a} + {x^b} + {x^c}}} + \dfrac{{{x^c}}}{{{x^a} + {x^b} + {x^c}}} \\
= \dfrac{{{x^a} + {x^b} + {x^c}}}{{{x^a} + {x^b} + {x^c}}} \\
= 1 \\
$
Thus, we get the value of $\dfrac{1}{{1 + {x^{b - a}} + {x^{c - a}}}} + \dfrac{1}{{1 + {x^{a - b}} + {x^{c - b}}}} + \dfrac{1}{{1 + {x^{b - c}} + {x^{a - c}}}}$ as 1.
Note:
Some properties of exponents and powers:
1) \[{a^{m + n}} = {a^m} \cdot {a^n}\]
2) \[{a^{m - n}} = \dfrac{{{a^m}}}{{{a^n}}}\]
3) \[\dfrac{1}{{{a^n}}} = {a^{ - n}}\]
4) \[{a^n}{b^n} = {\left( {ab} \right)^n}\]
5) $\sqrt[n]{a} = {a^{\dfrac{1}{n}}}$
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

