
If $x, y, z$ are all different and not equal to zero and $\left| {\begin{array}{*{20}{c}}
{1 + x}&1&1 \\
1&{1 + y}&1 \\
1&1&{1 + z}
\end{array}} \right| = 0$ then the value of ${x^{ - 1}} + {y^{ - 1}} + {z^{ - 1}}$ is equal to
A. $xyz$
B. ${x^{ - 1}} + {y^{ - 1}} + {z^{ - 1}}$
C. $ - x - y - z$
D. \[ - 1\]
Answer
585.6k+ views
Hint:
We will apply row transformation on the given determinant and then expand the determinant along the first row and equate it to 0 to form an equation. Then, divide the both sides by $xyz$ to find the value of ${x^{ - 1}} + {y^{ - 1}} + {z^{ - 1}}$.
Complete step by step solution:
We are given that $\left| {\begin{array}{*{20}{c}}
{1 + x}&1&1 \\
1&{1 + y}&1 \\
1&1&{1 + z}
\end{array}} \right| = 0$
Then, apply row transformation, to simply the determinant.
Apply ${R_1} \to {R_1} - {R_2}$ and ${R_2} \to {R_2} - {R_3}$
Then, we will have,
$\left| {\begin{array}{*{20}{c}}
x&{ - y}&0 \\
0&y&{ - z} \\
1&1&{1 + z}
\end{array}} \right| = 0$
Now, we will expand the determinant along the first row,
$
x\left( {y\left( {1 + z} \right) + z} \right) + y\left( {0 + z} \right) = 0 \\
\Rightarrow xy\left( {1 + z} \right) + xz + yz = 0 \\
\Rightarrow xy + xyz + xz + yz = 0 \\
\Rightarrow xy + yz + xz = - xyz \\
$
On dividing both sides by $xyz$, we will get,
${x^{ - 1}} + {y^{ - 1}} + {z^{ - 1}} = - 1$
Hence, the value of ${x^{ - 1}} + {y^{ - 1}} + {z^{ - 1}}$ is 1.
Thus, option D is correct.
Note:
We can expand the determinant along any row or any column. We apply row or column transformations to simply the calculation of finding the determinant. Also, if the value of the determinant is 0, then the matrix is a singular matrix.
We will apply row transformation on the given determinant and then expand the determinant along the first row and equate it to 0 to form an equation. Then, divide the both sides by $xyz$ to find the value of ${x^{ - 1}} + {y^{ - 1}} + {z^{ - 1}}$.
Complete step by step solution:
We are given that $\left| {\begin{array}{*{20}{c}}
{1 + x}&1&1 \\
1&{1 + y}&1 \\
1&1&{1 + z}
\end{array}} \right| = 0$
Then, apply row transformation, to simply the determinant.
Apply ${R_1} \to {R_1} - {R_2}$ and ${R_2} \to {R_2} - {R_3}$
Then, we will have,
$\left| {\begin{array}{*{20}{c}}
x&{ - y}&0 \\
0&y&{ - z} \\
1&1&{1 + z}
\end{array}} \right| = 0$
Now, we will expand the determinant along the first row,
$
x\left( {y\left( {1 + z} \right) + z} \right) + y\left( {0 + z} \right) = 0 \\
\Rightarrow xy\left( {1 + z} \right) + xz + yz = 0 \\
\Rightarrow xy + xyz + xz + yz = 0 \\
\Rightarrow xy + yz + xz = - xyz \\
$
On dividing both sides by $xyz$, we will get,
${x^{ - 1}} + {y^{ - 1}} + {z^{ - 1}} = - 1$
Hence, the value of ${x^{ - 1}} + {y^{ - 1}} + {z^{ - 1}}$ is 1.
Thus, option D is correct.
Note:
We can expand the determinant along any row or any column. We apply row or column transformations to simply the calculation of finding the determinant. Also, if the value of the determinant is 0, then the matrix is a singular matrix.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

