
If $x = $\[\tan \dfrac{\pi }{{18}}\] then \[3x_{}^6 - 27x_{}^4 + 33x_{}^2\] equals to-
A. \[1\]
B. $2$
C. $3\sqrt 3 $
D. $\dfrac{1}{3}$
Answer
587.1k+ views
Hint: First we can solve the question by applying the formula.
We need to substitute the given value of $x$ in the formula
Finally we get the required solution.
Formula used: $\tan 3\theta = \dfrac{{3\tan \theta - \tan _{}^3\theta }}{{1 - 3\tan _{}^2\theta }}$
Complete step-by-step answer:
It is given that the value \[x = \tan \dfrac{\pi }{{18}}\]
Let us considered $\theta = x$
Substitute the above in the formula and we can write $\tan 3x = \dfrac{{3\tan x - \tan _{}^3x}}{{1 - 3\tan _{}^2x}}....\left( 1 \right)$
Putting the value of $x = \tan \left( {\dfrac{\pi }{{18}}} \right)$ in equation \[\left( 1 \right)\] we get
$\tan \left( {3.\dfrac{\pi }{{18}}} \right) = \dfrac{{3\tan \left( {\dfrac{\pi }{{18}}} \right) - \tan _{}^3\left( {\dfrac{\pi }{{18}}} \right)}}{{1 - 3\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right)}}$
Now in left side, if we look we can simplify, $\tan \left( {\dfrac{{3\pi }}{{18}}} \right) = \tan \left( {\dfrac{\pi }{6}} \right)$
$\tan \left( {\dfrac{\pi }{6}} \right) = \dfrac{{3\tan \left( {\dfrac{\pi }{{18}}} \right) - \tan _{}^3\left( {\dfrac{\pi }{{18}}} \right)}}{{1 - 3\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right)}}$
Here $\pi = {180^ \circ }$ and we can simplify it,
Putting the value of $\tan \left( {\dfrac{\pi }{6}} \right)$$ = \tan {30^ \circ }$$ = \dfrac{1}{{\sqrt 3 }}$ in the equation we get-
$\dfrac{1}{{\sqrt 3 }} = \dfrac{{3\tan \left( {\dfrac{\pi }{{18}}} \right) - \tan _{}^3\left( {\dfrac{\pi }{{18}}} \right)}}{{1 - 3\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right)}}$
Now, we can squaring on both the sides we get
$\left( {\dfrac{1}{{\sqrt 3 }}} \right)_{}^2 = \left[ {\dfrac{{3\tan \left( {\dfrac{\pi }{{18}}} \right) - \tan _{}^3\left( {\dfrac{\pi }{{18}}} \right)}}{{1 - 3\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right)}}} \right]_{}^2$
After squaring both the sides we get $\dfrac{1}{3}$ on the left side
Also we need to apply the formula of $(a - b)_{}^2 = a_{}^2 + b_{}^2 - 2ab$ on both the numerator and denominator of the right side we can write it as,
$\dfrac{1}{3} = \dfrac{{9\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right) + \tan _{}^6\left( {\dfrac{\pi }{{18}}} \right) - 6\tan _{}^4\left( {\dfrac{\pi }{{18}}} \right)}}{{1 + 9\tan _{}^4\left( {\dfrac{\pi }{{18}}} \right) - 6\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right)}}$
Now we can take the above step in to cross multiplication on both the sides for getting the easy simplification
$1 + 9\tan _{}^4\left( {\dfrac{\pi }{{18}}} \right) - 6\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right) = 27\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right) + 3\tan _{}^6\left( {\dfrac{\pi }{{18}}} \right) - 18\tan _{}^4\left( {\dfrac{\pi }{{18}}} \right)$
We can add and subtracting the above terms in the form of equating itself, and \[1\] take it as RHS
$3\tan _{}^6\left( {\dfrac{\pi }{{18}}} \right) - 27\tan _{}^4\left( {\dfrac{\pi }{{18}}} \right) + 33\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right) = 1$
As mentioned above we have to take the given value \[x = \tan \dfrac{\pi }{{18}}\],
So we can write it as,
Thus the value of \[3x_{}^6 - 27x_{}^4 + 33x_{}^2\] is \[1\]
Note: There are two ways of solving this question. One is by applying the formula of $\tan 3\theta = \dfrac{{3\tan \theta - \tan _{}^3\theta }}{{1 - 3\tan _{}^2\theta }}$ and another is finding out the value of $\tan \dfrac{\pi }{{18}}$ and substituting it’s value in \[3x_{}^6 - 27x_{}^4 + 33x_{}^2\].
Both are correct but you should choose one which is suitable for you.
But it is an easy way to solve this question.
It must be kept in mind for solving the question of trigonometry you must know all the formulas related to it.
We need to substitute the given value of $x$ in the formula
Finally we get the required solution.
Formula used: $\tan 3\theta = \dfrac{{3\tan \theta - \tan _{}^3\theta }}{{1 - 3\tan _{}^2\theta }}$
Complete step-by-step answer:
It is given that the value \[x = \tan \dfrac{\pi }{{18}}\]
Let us considered $\theta = x$
Substitute the above in the formula and we can write $\tan 3x = \dfrac{{3\tan x - \tan _{}^3x}}{{1 - 3\tan _{}^2x}}....\left( 1 \right)$
Putting the value of $x = \tan \left( {\dfrac{\pi }{{18}}} \right)$ in equation \[\left( 1 \right)\] we get
$\tan \left( {3.\dfrac{\pi }{{18}}} \right) = \dfrac{{3\tan \left( {\dfrac{\pi }{{18}}} \right) - \tan _{}^3\left( {\dfrac{\pi }{{18}}} \right)}}{{1 - 3\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right)}}$
Now in left side, if we look we can simplify, $\tan \left( {\dfrac{{3\pi }}{{18}}} \right) = \tan \left( {\dfrac{\pi }{6}} \right)$
$\tan \left( {\dfrac{\pi }{6}} \right) = \dfrac{{3\tan \left( {\dfrac{\pi }{{18}}} \right) - \tan _{}^3\left( {\dfrac{\pi }{{18}}} \right)}}{{1 - 3\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right)}}$
Here $\pi = {180^ \circ }$ and we can simplify it,
Putting the value of $\tan \left( {\dfrac{\pi }{6}} \right)$$ = \tan {30^ \circ }$$ = \dfrac{1}{{\sqrt 3 }}$ in the equation we get-
$\dfrac{1}{{\sqrt 3 }} = \dfrac{{3\tan \left( {\dfrac{\pi }{{18}}} \right) - \tan _{}^3\left( {\dfrac{\pi }{{18}}} \right)}}{{1 - 3\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right)}}$
Now, we can squaring on both the sides we get
$\left( {\dfrac{1}{{\sqrt 3 }}} \right)_{}^2 = \left[ {\dfrac{{3\tan \left( {\dfrac{\pi }{{18}}} \right) - \tan _{}^3\left( {\dfrac{\pi }{{18}}} \right)}}{{1 - 3\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right)}}} \right]_{}^2$
After squaring both the sides we get $\dfrac{1}{3}$ on the left side
Also we need to apply the formula of $(a - b)_{}^2 = a_{}^2 + b_{}^2 - 2ab$ on both the numerator and denominator of the right side we can write it as,
$\dfrac{1}{3} = \dfrac{{9\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right) + \tan _{}^6\left( {\dfrac{\pi }{{18}}} \right) - 6\tan _{}^4\left( {\dfrac{\pi }{{18}}} \right)}}{{1 + 9\tan _{}^4\left( {\dfrac{\pi }{{18}}} \right) - 6\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right)}}$
Now we can take the above step in to cross multiplication on both the sides for getting the easy simplification
$1 + 9\tan _{}^4\left( {\dfrac{\pi }{{18}}} \right) - 6\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right) = 27\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right) + 3\tan _{}^6\left( {\dfrac{\pi }{{18}}} \right) - 18\tan _{}^4\left( {\dfrac{\pi }{{18}}} \right)$
We can add and subtracting the above terms in the form of equating itself, and \[1\] take it as RHS
$3\tan _{}^6\left( {\dfrac{\pi }{{18}}} \right) - 27\tan _{}^4\left( {\dfrac{\pi }{{18}}} \right) + 33\tan _{}^2\left( {\dfrac{\pi }{{18}}} \right) = 1$
As mentioned above we have to take the given value \[x = \tan \dfrac{\pi }{{18}}\],
So we can write it as,
Thus the value of \[3x_{}^6 - 27x_{}^4 + 33x_{}^2\] is \[1\]
Note: There are two ways of solving this question. One is by applying the formula of $\tan 3\theta = \dfrac{{3\tan \theta - \tan _{}^3\theta }}{{1 - 3\tan _{}^2\theta }}$ and another is finding out the value of $\tan \dfrac{\pi }{{18}}$ and substituting it’s value in \[3x_{}^6 - 27x_{}^4 + 33x_{}^2\].
Both are correct but you should choose one which is suitable for you.
But it is an easy way to solve this question.
It must be kept in mind for solving the question of trigonometry you must know all the formulas related to it.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

