
If x > m, y > n, z > r (x, y, z > 0) such that \[\left| \begin{matrix}
x & n & r \\
m & y & r \\
m & n & z \\
\end{matrix} \right|=0\]. The value of $\dfrac{x}{x-m}+\dfrac{y}{y-n}+\dfrac{z}{z-r}$ is?
(a) 1
(b) -1
(c) 2
(d) -2
Answer
463.5k+ views
Hint: Consider the given determinant and perform elementary row operations \[{{R}_{1}}\to {{R}_{1}}-{{R}_{2}}\] and \[{{R}_{2}}\to {{R}_{2}}-{{R}_{3}}\]. Now, expand the determinant along the first row and form an expression with the given variables. Divide both the sides with $\left( x-m \right)\left( y-n \right)\left( z-r \right)$ and form a simplified relation. Further, write the terms $\dfrac{x}{x-m}=\left( 1+\dfrac{m}{x-m} \right)$ and$\dfrac{y}{y-n}=\left( 1+\dfrac{n}{y-n} \right)$, use the above obtained relation and substitute its value to get the answer.
Complete step by step solution:
Here we have been provided with the determinant \[\left| \begin{matrix}
x & n & r \\
m & y & r \\
m & n & z \\
\end{matrix} \right|=0\] and we are asked to find the value of the expression $\dfrac{x}{x-m}+\dfrac{y}{y-n}+\dfrac{z}{z-r}$ with the given conditions that x > m, y > n, z > r (x, y, z > 0). Let us assume the expression as E, so we have,
$\Rightarrow E=\dfrac{x}{x-m}+\dfrac{y}{y-n}+\dfrac{z}{z-r}$
Let us simplify the given determinant, so performing the elementary row operations \[{{R}_{1}}\to {{R}_{1}}-{{R}_{2}}\] and \[{{R}_{2}}\to {{R}_{2}}-{{R}_{3}}\] we get,
\[\Rightarrow \left| \begin{matrix}
x-m & n-y & 0 \\
0 & y-n & r-z \\
m & n & z \\
\end{matrix} \right|=0\]
On expanding the determinant along the first row we get,
\[\begin{align}
& \Rightarrow \left( x-m \right)\left[ \left( y-n \right)z-n\left( r-z \right) \right]-\left( n-y \right)\left[ 0\left( z \right)-m\left( r-z \right) \right]+0\left[ 0\left( n \right)-m\left( r-z \right) \right]=0 \\
& \Rightarrow z\left( x-m \right)\left( y-n \right)-n\left( x-m \right)\left( r-z \right)+m\left( n-y \right)\left( r-z \right)=0 \\
& \Rightarrow z\left( x-m \right)\left( y-n \right)+n\left( x-m \right)\left( z-r \right)+m\left( y-n \right)\left( z-r \right)=0 \\
\end{align}\]
Dividing both the sides with $\left( x-m \right)\left( y-n \right)\left( z-r \right)$ we get,
\[\begin{align}
& \Rightarrow \dfrac{z\left( x-m \right)\left( y-n \right)+n\left( x-m \right)\left( z-r \right)+m\left( y-n \right)\left( z-r \right)}{\left( x-m \right)\left( y-n \right)\left( z-r \right)}=0 \\
& \Rightarrow \dfrac{z}{z-r}+\dfrac{n}{y-n}+\dfrac{m}{x-m}=0........\left( i \right) \\
\end{align}\]
Now, let us simplify the expression E, so we can write the terms $\dfrac{x}{x-m}=\left( 1+\dfrac{m}{x-m} \right)$ and$\dfrac{y}{y-n}=\left( 1+\dfrac{n}{y-n} \right)$, therefore we get,
$\begin{align}
& \Rightarrow E=1+\dfrac{m}{x-m}+1+\dfrac{n}{y-n}+\dfrac{z}{z-r} \\
& \Rightarrow E=2+\left( \dfrac{m}{x-m}+\dfrac{n}{y-n}+\dfrac{z}{z-r} \right) \\
\end{align}$
Substituting the value of equation (i) in the above expression we get,
$\begin{align}
& \Rightarrow E=2+0 \\
& \therefore E=2 \\
\end{align}$
So, the correct answer is “Option c”.
Note: Note that we haven’t directly expanded the determinant but performed some operations first because we can see that in the expression we required terms like $\left( x-m \right)$, $\left( y-n \right)$ and $\left( z-r \right)$. If we would have directly expanded the determinant then our calculations would have become difficult. If options are provided and time is less then you can assign some particular values to the variables x, y, z, m, n and r according to the conditions given. It will reduce the calculation.
Complete step by step solution:
Here we have been provided with the determinant \[\left| \begin{matrix}
x & n & r \\
m & y & r \\
m & n & z \\
\end{matrix} \right|=0\] and we are asked to find the value of the expression $\dfrac{x}{x-m}+\dfrac{y}{y-n}+\dfrac{z}{z-r}$ with the given conditions that x > m, y > n, z > r (x, y, z > 0). Let us assume the expression as E, so we have,
$\Rightarrow E=\dfrac{x}{x-m}+\dfrac{y}{y-n}+\dfrac{z}{z-r}$
Let us simplify the given determinant, so performing the elementary row operations \[{{R}_{1}}\to {{R}_{1}}-{{R}_{2}}\] and \[{{R}_{2}}\to {{R}_{2}}-{{R}_{3}}\] we get,
\[\Rightarrow \left| \begin{matrix}
x-m & n-y & 0 \\
0 & y-n & r-z \\
m & n & z \\
\end{matrix} \right|=0\]
On expanding the determinant along the first row we get,
\[\begin{align}
& \Rightarrow \left( x-m \right)\left[ \left( y-n \right)z-n\left( r-z \right) \right]-\left( n-y \right)\left[ 0\left( z \right)-m\left( r-z \right) \right]+0\left[ 0\left( n \right)-m\left( r-z \right) \right]=0 \\
& \Rightarrow z\left( x-m \right)\left( y-n \right)-n\left( x-m \right)\left( r-z \right)+m\left( n-y \right)\left( r-z \right)=0 \\
& \Rightarrow z\left( x-m \right)\left( y-n \right)+n\left( x-m \right)\left( z-r \right)+m\left( y-n \right)\left( z-r \right)=0 \\
\end{align}\]
Dividing both the sides with $\left( x-m \right)\left( y-n \right)\left( z-r \right)$ we get,
\[\begin{align}
& \Rightarrow \dfrac{z\left( x-m \right)\left( y-n \right)+n\left( x-m \right)\left( z-r \right)+m\left( y-n \right)\left( z-r \right)}{\left( x-m \right)\left( y-n \right)\left( z-r \right)}=0 \\
& \Rightarrow \dfrac{z}{z-r}+\dfrac{n}{y-n}+\dfrac{m}{x-m}=0........\left( i \right) \\
\end{align}\]
Now, let us simplify the expression E, so we can write the terms $\dfrac{x}{x-m}=\left( 1+\dfrac{m}{x-m} \right)$ and$\dfrac{y}{y-n}=\left( 1+\dfrac{n}{y-n} \right)$, therefore we get,
$\begin{align}
& \Rightarrow E=1+\dfrac{m}{x-m}+1+\dfrac{n}{y-n}+\dfrac{z}{z-r} \\
& \Rightarrow E=2+\left( \dfrac{m}{x-m}+\dfrac{n}{y-n}+\dfrac{z}{z-r} \right) \\
\end{align}$
Substituting the value of equation (i) in the above expression we get,
$\begin{align}
& \Rightarrow E=2+0 \\
& \therefore E=2 \\
\end{align}$
So, the correct answer is “Option c”.
Note: Note that we haven’t directly expanded the determinant but performed some operations first because we can see that in the expression we required terms like $\left( x-m \right)$, $\left( y-n \right)$ and $\left( z-r \right)$. If we would have directly expanded the determinant then our calculations would have become difficult. If options are provided and time is less then you can assign some particular values to the variables x, y, z, m, n and r according to the conditions given. It will reduce the calculation.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
