
If $x = \left( {\dfrac{{1 - \sqrt y }}{{1 + \sqrt y }}} \right),$ then $\dfrac{{dy}}{{dx}}$ is equal to ;
$\left( 1 \right)\dfrac{4}{{{{\left( {x + 1} \right)}^2}}}$
$\left( 2 \right)\dfrac{{4\left( {x - 1} \right)}}{{{{\left( {x + 1} \right)}^3}}}$
$\left( 3 \right)\dfrac{{\left( {x - 1} \right)}}{{{{\left( {x + 1} \right)}^3}}}$
$\left( 4 \right)\dfrac{4}{{{{\left( {x + 1} \right)}^3}}}$
Answer
504.6k+ views
Hint: This question requires the knowledge of basic derivative formulae and algebraic identities. We have to calculate $\dfrac{{dy}}{{dx}}$ which determines the rate of change of $y$ with respect to $x$ . Here the independent variable is $x$ and $y$ is the dependent variable. But we are given the value of $x$ in terms of $y$ i.e. $x = \left( {\dfrac{{1 - \sqrt y }}{{1 + \sqrt y }}} \right),$ so first we will get the expression of $y$ in terms of $x$ and then we will differentiate it with respect to $x$ .
Complete step by step solution:
The given expression is ;
$ \Rightarrow x = \left( {\dfrac{{1 - \sqrt y }}{{1 + \sqrt y }}} \right)$
But we have to calculate $\dfrac{{dy}}{{dx}}$ , so we need to get $y{\text{ in terms of }}x$ from the given expression;
By cross multiplying the given expression;
$ \Rightarrow x\left( {1 + \sqrt y } \right) = \left( {1 - \sqrt y } \right)$
$ \Rightarrow x + x\sqrt y = 1 - \sqrt y $
Taking the $\sqrt y $ terms to the L.H.S. ;
$ \Rightarrow x\sqrt y + \sqrt y = 1 - x$
Taking $\sqrt y $ common on L.H.S. ;
$ \Rightarrow \sqrt y \left( {x + 1} \right) = 1 - x$
Since we have to calculate the value of $y$ in terms of $x$ , therefore taking all the $x$ terms to the R.H.S. ;
$ \Rightarrow \sqrt y = \dfrac{{1 - x}}{{1 + x}}$
Taking square root on both the sides of the equation;
$\left( {\because \sqrt y {\text{ can also be written as }}{{\text{y}}^{\dfrac{1}{2}}}} \right)$
$ \Rightarrow {\left( {{y^{\dfrac{1}{2}}}} \right)^2} = {\left( {\dfrac{{1 - x}}{{1 + x}}} \right)^2}$
The above equation can also be written as;
$ \Rightarrow y = \dfrac{{{{\left( {1 - x} \right)}^2}}}{{{{\left( {1 + x} \right)}^2}}}{\text{ }}......\left( 1 \right)$
Now, differentiating equation $\left( 1 \right)$ with respect to $x$ , we get;
By the quotient or division rule of differentiation;
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{\left( {\dfrac{{du}}{{dx}} \times v} \right) - \left( {u \times \dfrac{{dv}}{{dx}}} \right)}}{{{v^2}}}{\text{ }}......\left( 2 \right)$
Let $u = {\left( {1 - x} \right)^2}$ and $v = \left( {1 + {x^2}} \right)$
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}{\left( {1 - x} \right)^2}$
$ \Rightarrow \dfrac{{du}}{{dx}} = 2\left( {1 - x} \right) \times \left( { - 1} \right){\text{ }}......\left( 3 \right)$
Now, let us calculate $\dfrac{{dv}}{{dx}}$ ;
$ \Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{d}{{dx}}{\left( {1 + x} \right)^2}$
$ \Rightarrow \dfrac{{dv}}{{dx}} = 2\left( {1 + x} \right){\text{ }}......\left( 4 \right)$
Put the values of $\dfrac{{du}}{{dx}}{\text{ and }}\dfrac{{dv}}{{dx}}$ in equation $\left( 2 \right)$ , we get;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{{{\left( {1 - x} \right)}^2}}}{{{{\left( {1 + x} \right)}^2}}}} \right) = \dfrac{{\left( { - 2\left( {1 - x} \right) \times {{\left( {1 + x} \right)}^2}} \right) - \left( {{{\left( {1 - x} \right)}^2} \times 2\left( {1 + x} \right)} \right)}}{{{{\left( {{{\left( {1 + x} \right)}^2}} \right)}^2}}}$
Simplifying the above equation;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2\left( {x - 1} \right) \times {{\left( {1 + x} \right)}^2} - {{\left( {x - 1} \right)}^2} \times 2\left( {1 + x} \right)}}{{{{\left( {1 + x} \right)}^4}}}$
Taking $2\left( {1 + x} \right)\left( {x - 1} \right)$ outside;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2\left( {x - 1} \right)\left( {1 + x} \right)\left[ {\left( {1 + x} \right) - \left( {1 - x} \right)} \right]}}{{{{\left( {1 + x} \right)}^4}}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2\left( {x - 1} \right)\left( {1 + x} \right)\left[ {\left( {1 + x - x + 1} \right)} \right]}}{{{{\left( {1 + x} \right)}^4}}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {x - 1} \right)\left( {1 + x} \right)}}{{{{\left( {1 + x} \right)}^4}}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {x - 1} \right)}}{{{{\left( {1 + x} \right)}^3}}}$
Hence if $x = \left( {\dfrac{{1 - \sqrt y }}{{1 + \sqrt y }}} \right),$ then $\dfrac{{dy}}{{dx}} = \dfrac{{4\left( {x - 1} \right)}}{{{{\left( {1 + x} \right)}^3}}}$
Therefore, the correct answer for this question is option $\left( 2 \right)$.
Note: The knowledge of standard derivative formulae is very useful for solving such type of questions. Some of most important and frequently used derivative rules are given below:
$\left( 1 \right)$ The power rule : $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ .
$\left( 2 \right)$ The addition rule: $\dfrac{d}{{dx}}\left( {u \pm v} \right) = \dfrac{{du}}{{dx}} \pm \dfrac{{dv}}{{dx}}$ .
$\left( 3 \right)$ Differentiation of a constant multiplied with a variable: $\dfrac{d}{{dx}}\left( {cx} \right) = c\dfrac{d}{{dx}}x = c$ .
$\left( 4 \right)$ The multiplication rule: $\dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}}$ .
$\left( 5 \right)$ The division or quotient rule $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{\left( {\dfrac{{du}}{{dx}} \times v} \right) - \left( {u \times \dfrac{{dv}}{{dx}}} \right)}}{{{v^2}}}$ .
Complete step by step solution:
The given expression is ;
$ \Rightarrow x = \left( {\dfrac{{1 - \sqrt y }}{{1 + \sqrt y }}} \right)$
But we have to calculate $\dfrac{{dy}}{{dx}}$ , so we need to get $y{\text{ in terms of }}x$ from the given expression;
By cross multiplying the given expression;
$ \Rightarrow x\left( {1 + \sqrt y } \right) = \left( {1 - \sqrt y } \right)$
$ \Rightarrow x + x\sqrt y = 1 - \sqrt y $
Taking the $\sqrt y $ terms to the L.H.S. ;
$ \Rightarrow x\sqrt y + \sqrt y = 1 - x$
Taking $\sqrt y $ common on L.H.S. ;
$ \Rightarrow \sqrt y \left( {x + 1} \right) = 1 - x$
Since we have to calculate the value of $y$ in terms of $x$ , therefore taking all the $x$ terms to the R.H.S. ;
$ \Rightarrow \sqrt y = \dfrac{{1 - x}}{{1 + x}}$
Taking square root on both the sides of the equation;
$\left( {\because \sqrt y {\text{ can also be written as }}{{\text{y}}^{\dfrac{1}{2}}}} \right)$
$ \Rightarrow {\left( {{y^{\dfrac{1}{2}}}} \right)^2} = {\left( {\dfrac{{1 - x}}{{1 + x}}} \right)^2}$
The above equation can also be written as;
$ \Rightarrow y = \dfrac{{{{\left( {1 - x} \right)}^2}}}{{{{\left( {1 + x} \right)}^2}}}{\text{ }}......\left( 1 \right)$
Now, differentiating equation $\left( 1 \right)$ with respect to $x$ , we get;
By the quotient or division rule of differentiation;
$ \Rightarrow \dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{\left( {\dfrac{{du}}{{dx}} \times v} \right) - \left( {u \times \dfrac{{dv}}{{dx}}} \right)}}{{{v^2}}}{\text{ }}......\left( 2 \right)$
Let $u = {\left( {1 - x} \right)^2}$ and $v = \left( {1 + {x^2}} \right)$
$ \Rightarrow \dfrac{{du}}{{dx}} = \dfrac{d}{{dx}}{\left( {1 - x} \right)^2}$
$ \Rightarrow \dfrac{{du}}{{dx}} = 2\left( {1 - x} \right) \times \left( { - 1} \right){\text{ }}......\left( 3 \right)$
Now, let us calculate $\dfrac{{dv}}{{dx}}$ ;
$ \Rightarrow \dfrac{{dv}}{{dx}} = \dfrac{d}{{dx}}{\left( {1 + x} \right)^2}$
$ \Rightarrow \dfrac{{dv}}{{dx}} = 2\left( {1 + x} \right){\text{ }}......\left( 4 \right)$
Put the values of $\dfrac{{du}}{{dx}}{\text{ and }}\dfrac{{dv}}{{dx}}$ in equation $\left( 2 \right)$ , we get;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\dfrac{{{{\left( {1 - x} \right)}^2}}}{{{{\left( {1 + x} \right)}^2}}}} \right) = \dfrac{{\left( { - 2\left( {1 - x} \right) \times {{\left( {1 + x} \right)}^2}} \right) - \left( {{{\left( {1 - x} \right)}^2} \times 2\left( {1 + x} \right)} \right)}}{{{{\left( {{{\left( {1 + x} \right)}^2}} \right)}^2}}}$
Simplifying the above equation;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2\left( {x - 1} \right) \times {{\left( {1 + x} \right)}^2} - {{\left( {x - 1} \right)}^2} \times 2\left( {1 + x} \right)}}{{{{\left( {1 + x} \right)}^4}}}$
Taking $2\left( {1 + x} \right)\left( {x - 1} \right)$ outside;
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2\left( {x - 1} \right)\left( {1 + x} \right)\left[ {\left( {1 + x} \right) - \left( {1 - x} \right)} \right]}}{{{{\left( {1 + x} \right)}^4}}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{2\left( {x - 1} \right)\left( {1 + x} \right)\left[ {\left( {1 + x - x + 1} \right)} \right]}}{{{{\left( {1 + x} \right)}^4}}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {x - 1} \right)\left( {1 + x} \right)}}{{{{\left( {1 + x} \right)}^4}}}$
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4\left( {x - 1} \right)}}{{{{\left( {1 + x} \right)}^3}}}$
Hence if $x = \left( {\dfrac{{1 - \sqrt y }}{{1 + \sqrt y }}} \right),$ then $\dfrac{{dy}}{{dx}} = \dfrac{{4\left( {x - 1} \right)}}{{{{\left( {1 + x} \right)}^3}}}$
Therefore, the correct answer for this question is option $\left( 2 \right)$.
Note: The knowledge of standard derivative formulae is very useful for solving such type of questions. Some of most important and frequently used derivative rules are given below:
$\left( 1 \right)$ The power rule : $\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}$ .
$\left( 2 \right)$ The addition rule: $\dfrac{d}{{dx}}\left( {u \pm v} \right) = \dfrac{{du}}{{dx}} \pm \dfrac{{dv}}{{dx}}$ .
$\left( 3 \right)$ Differentiation of a constant multiplied with a variable: $\dfrac{d}{{dx}}\left( {cx} \right) = c\dfrac{d}{{dx}}x = c$ .
$\left( 4 \right)$ The multiplication rule: $\dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}}$ .
$\left( 5 \right)$ The division or quotient rule $\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{\left( {\dfrac{{du}}{{dx}} \times v} \right) - \left( {u \times \dfrac{{dv}}{{dx}}} \right)}}{{{v^2}}}$ .
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

