
If $ x = \cos ec\,\theta - \sin \,\theta $ and $ y = \cos e{c^n}\theta - {\sin ^n}\theta $ ,
Then show that $ \left( {{x^2} + y} \right){\left( {\dfrac{{dy}}{{dx}}} \right)^2} - {n^2}\left( {{y^2} + 4} \right) = 0 $ .
Answer
513.9k+ views
Hint: $ {\left( {\dfrac{{dy}}{{dx}}} \right)^2} $ is not equal to $ \dfrac{{{d^2}y}}{{d{x^2}}} $ as $ {\left( {\dfrac{{dy}}{{dx}}} \right)^2} $ is the square of $ \dfrac{{dy}}{{dx}} $ and $ \dfrac{{{d^2}y}}{{d{x^2}}} $ is the double differentiation of $ y $ with respect to $ x $ . $ {\sin ^n}\theta $ on differentiation do not $ {\cos ^n}\theta $ . as it's totally different thing. It's $ {\left( {\sin \,\theta } \right)^n} $ which will be differentiated by the rule $ \dfrac{d}{{dx}}{x^n} = n{x^{n - 1}} $ method. The parametric form is a method in which you differentiate two values with same value and later divide them, for example
if $ x = \sin \theta $ and $ y = \cos \,\theta $ , Find $ \dfrac{{dy}}{{dx}} $
Thus, $ \dfrac{{dx}}{{d\theta }} = \cos \theta $ and $ \dfrac{{dy}}{{d\theta }} = - \sin \theta $
Thus, $ \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} = \dfrac{{ - \sin \theta }}{{\cos \theta }} = \tan \theta $
Complete step-by-step answer:
Given: $ \left( {{x^2} + y} \right){\left( {\dfrac{{dy}}{{dx}}} \right)^2} - {n^2}\left( {{y^2} + 4} \right) = 0 $
First differentiate $ x $ and $ y $ with respect to $ \theta $ to get the values,
$
x = \cos ec\,\theta - \sin \theta \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = - \cot \theta .\cos ec\,\theta - \cos \theta \\
\,\,\,\,\,\,\, = \dfrac{{ - \cos \theta }}{{\sin \theta }} \times \cos ec\,\theta - \cos \theta \\
\,\,\,\,\,\,\, = - \cos \theta \left( {\dfrac{{\cos ec\,\theta }}{{\sin \theta }} + 1} \right) \\
\dfrac{{dx}}{{d\theta }} = - \dfrac{{\cos \theta }}{{\sin \theta }}\left( {\cos ec\,\theta + \sin \theta } \right)\,\,\,\,\,\, - - - - - - \left( i \right) \\
$
Now, for $ y $ ,
\[
y = \cos ec{\,^n}\theta - {\sin ^n}\theta \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}\left( {\cos ec{\,^n}\theta - {{\sin }^n}\theta } \right) \\
\,\,\,\,\,\,\, = n\cos ec{\,^{n - 1}}\theta \left( { - \cot \theta .\cos ec\,\theta } \right) - n{\sin ^{n - 1}}\theta .\cos \theta \\
\,\,\,\,\,\,\, = - n\cot \theta \left( {\cos e{c^n}\,\theta + {{\sin }^{n - 1}}\theta .\sin \theta } \right) \\
\dfrac{{dy}}{{d\theta }} = - n\cot \theta \left( {\cos e{c^n}\,\theta + {{\sin }^n}\theta } \right)\,\,\,\,\,\, - - - - - - \left( {ii} \right) \\
\]
Now to find $ \dfrac{{dy}}{{dx}} $ , first divide \[\dfrac{{dy}}{{d\theta }}\] and $ \dfrac{{dx}}{{d\theta }} $ .
$
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} = \dfrac{{ - n\cot \theta \left( {\cos e{c^n}\,\theta + {{\sin }^n}\theta } \right)}}{{ - \cot \theta \left( {\cos ec\,\theta + \sin \theta } \right)}} \\
\dfrac{{dy}}{{dx}} = \dfrac{{n\left( {\cos e{c^n}\,\theta + {{\sin }^n}\theta } \right)}}{{\left( {\cos ec\,\theta + \sin \theta } \right)}} \\
$
Now, putting the value of $ \dfrac{{dy}}{{dx}} $ in the given equation.
\Rightarrow $ \left( {{x^2} + y} \right){\left( {\dfrac{{dy}}{{dx}}} \right)^2} - {n^2}\left( {{y^2} + 4} \right) = 0 $
Now, Left hand side is
$
\Rightarrow \left( {{x^2} + y} \right){\left( {\dfrac{{dy}}{{dx}}} \right)^2} - {n^2}\left( {{y^2} + 4} \right) \\
= \left( {{{\left( {\cos ec\,\theta - \sin \theta } \right)}^2} + 4} \right)\left( {{n^2}\dfrac{{{{\left( {\cos ec{\,^n}\theta - {{\sin }^n}\theta } \right)}^2}}}{{{{\left( {\cos ec\,\theta - \sin \theta } \right)}^2}}}} \right) - {n^2}\left( {{{\left( {\cos ec{\,^n}\theta - {{\sin }^n}\theta } \right)}^2} + 4} \right) \\
= \left( {\cos ec{\,^2}\theta + {{\sin }^2}\theta - 2 + 4} \right)\left( {{n^2}\dfrac{{{{\left( {\cos ec{\,^n}\theta - {{\sin }^n}\theta } \right)}^2}}}{{{{\left( {\cos ec\,\theta - \sin \theta } \right)}^2}}}} \right) - {n^2}\left( {\cos ec{\,^{2n}}\theta + {{\sin }^{2n}}\theta - 2 + 4} \right) \\
= \left( {\cos ec{\,^2}\theta + {{\sin }^2}\theta + 2\cos ec\,\theta .\sin \theta } \right){n^2}{\left( {\dfrac{{\left( {\cos ec{\,^n}\theta - {{\sin }^n}\theta } \right)}}{{\left( {\cos ec\,\theta - \sin \theta } \right)}}} \right)^2} - {n^2}\left( {\cos ec{\,^{2n}}\theta + {{\sin }^{2n}}\theta + 2\cos ec{\,^n}\theta .{{\sin }^n}\theta } \right) \\
= {\left( {\cos ec\,\theta + \sin \theta } \right)^2}{n^2}\left( {\dfrac{{{{\left( {\cos ec{\,^n}\theta - {{\sin }^n}\theta } \right)}^2}}}{{{{\left( {\cos ec\,\theta - \sin \theta } \right)}^2}}}} \right) - {n^2}{\left( {\cos e{c^n}\,\theta + {{\sin }^n}\theta } \right)^2} \\
= {n^2}{\left( {\cos e{c^n}\,\theta + {{\sin }^n}\theta } \right)^2} - {n^2}{\left( {\cos e{c^n}\,\theta + {{\sin }^n}\theta } \right)^2} \\
= 0 \\
$
Hence the left hand side proved equal to right hand side
Note: In this type of questions students often make mistakes while differentiating. Do not directly differentiate $ y $ with respect to $ x $ to get $ \dfrac{{dy}}{{dx}} $ as it will be completely incorrect, Hence try to use another variable ” $ \theta $ ” and then divide them to get $ \dfrac{{dy}}{{dx}} $ , Now perform the operation on the given equation very carefully. A simple error in sign can bring you out the wrong result.
if $ x = \sin \theta $ and $ y = \cos \,\theta $ , Find $ \dfrac{{dy}}{{dx}} $
Thus, $ \dfrac{{dx}}{{d\theta }} = \cos \theta $ and $ \dfrac{{dy}}{{d\theta }} = - \sin \theta $
Thus, $ \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} = \dfrac{{ - \sin \theta }}{{\cos \theta }} = \tan \theta $
Complete step-by-step answer:
Given: $ \left( {{x^2} + y} \right){\left( {\dfrac{{dy}}{{dx}}} \right)^2} - {n^2}\left( {{y^2} + 4} \right) = 0 $
First differentiate $ x $ and $ y $ with respect to $ \theta $ to get the values,
$
x = \cos ec\,\theta - \sin \theta \\
\Rightarrow \dfrac{{dx}}{{d\theta }} = - \cot \theta .\cos ec\,\theta - \cos \theta \\
\,\,\,\,\,\,\, = \dfrac{{ - \cos \theta }}{{\sin \theta }} \times \cos ec\,\theta - \cos \theta \\
\,\,\,\,\,\,\, = - \cos \theta \left( {\dfrac{{\cos ec\,\theta }}{{\sin \theta }} + 1} \right) \\
\dfrac{{dx}}{{d\theta }} = - \dfrac{{\cos \theta }}{{\sin \theta }}\left( {\cos ec\,\theta + \sin \theta } \right)\,\,\,\,\,\, - - - - - - \left( i \right) \\
$
Now, for $ y $ ,
\[
y = \cos ec{\,^n}\theta - {\sin ^n}\theta \\
\Rightarrow \dfrac{{dy}}{{d\theta }} = \dfrac{d}{{d\theta }}\left( {\cos ec{\,^n}\theta - {{\sin }^n}\theta } \right) \\
\,\,\,\,\,\,\, = n\cos ec{\,^{n - 1}}\theta \left( { - \cot \theta .\cos ec\,\theta } \right) - n{\sin ^{n - 1}}\theta .\cos \theta \\
\,\,\,\,\,\,\, = - n\cot \theta \left( {\cos e{c^n}\,\theta + {{\sin }^{n - 1}}\theta .\sin \theta } \right) \\
\dfrac{{dy}}{{d\theta }} = - n\cot \theta \left( {\cos e{c^n}\,\theta + {{\sin }^n}\theta } \right)\,\,\,\,\,\, - - - - - - \left( {ii} \right) \\
\]
Now to find $ \dfrac{{dy}}{{dx}} $ , first divide \[\dfrac{{dy}}{{d\theta }}\] and $ \dfrac{{dx}}{{d\theta }} $ .
$
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{d\theta }}}}{{\dfrac{{dx}}{{d\theta }}}} = \dfrac{{ - n\cot \theta \left( {\cos e{c^n}\,\theta + {{\sin }^n}\theta } \right)}}{{ - \cot \theta \left( {\cos ec\,\theta + \sin \theta } \right)}} \\
\dfrac{{dy}}{{dx}} = \dfrac{{n\left( {\cos e{c^n}\,\theta + {{\sin }^n}\theta } \right)}}{{\left( {\cos ec\,\theta + \sin \theta } \right)}} \\
$
Now, putting the value of $ \dfrac{{dy}}{{dx}} $ in the given equation.
\Rightarrow $ \left( {{x^2} + y} \right){\left( {\dfrac{{dy}}{{dx}}} \right)^2} - {n^2}\left( {{y^2} + 4} \right) = 0 $
Now, Left hand side is
$
\Rightarrow \left( {{x^2} + y} \right){\left( {\dfrac{{dy}}{{dx}}} \right)^2} - {n^2}\left( {{y^2} + 4} \right) \\
= \left( {{{\left( {\cos ec\,\theta - \sin \theta } \right)}^2} + 4} \right)\left( {{n^2}\dfrac{{{{\left( {\cos ec{\,^n}\theta - {{\sin }^n}\theta } \right)}^2}}}{{{{\left( {\cos ec\,\theta - \sin \theta } \right)}^2}}}} \right) - {n^2}\left( {{{\left( {\cos ec{\,^n}\theta - {{\sin }^n}\theta } \right)}^2} + 4} \right) \\
= \left( {\cos ec{\,^2}\theta + {{\sin }^2}\theta - 2 + 4} \right)\left( {{n^2}\dfrac{{{{\left( {\cos ec{\,^n}\theta - {{\sin }^n}\theta } \right)}^2}}}{{{{\left( {\cos ec\,\theta - \sin \theta } \right)}^2}}}} \right) - {n^2}\left( {\cos ec{\,^{2n}}\theta + {{\sin }^{2n}}\theta - 2 + 4} \right) \\
= \left( {\cos ec{\,^2}\theta + {{\sin }^2}\theta + 2\cos ec\,\theta .\sin \theta } \right){n^2}{\left( {\dfrac{{\left( {\cos ec{\,^n}\theta - {{\sin }^n}\theta } \right)}}{{\left( {\cos ec\,\theta - \sin \theta } \right)}}} \right)^2} - {n^2}\left( {\cos ec{\,^{2n}}\theta + {{\sin }^{2n}}\theta + 2\cos ec{\,^n}\theta .{{\sin }^n}\theta } \right) \\
= {\left( {\cos ec\,\theta + \sin \theta } \right)^2}{n^2}\left( {\dfrac{{{{\left( {\cos ec{\,^n}\theta - {{\sin }^n}\theta } \right)}^2}}}{{{{\left( {\cos ec\,\theta - \sin \theta } \right)}^2}}}} \right) - {n^2}{\left( {\cos e{c^n}\,\theta + {{\sin }^n}\theta } \right)^2} \\
= {n^2}{\left( {\cos e{c^n}\,\theta + {{\sin }^n}\theta } \right)^2} - {n^2}{\left( {\cos e{c^n}\,\theta + {{\sin }^n}\theta } \right)^2} \\
= 0 \\
$
Hence the left hand side proved equal to right hand side
Note: In this type of questions students often make mistakes while differentiating. Do not directly differentiate $ y $ with respect to $ x $ to get $ \dfrac{{dy}}{{dx}} $ as it will be completely incorrect, Hence try to use another variable ” $ \theta $ ” and then divide them to get $ \dfrac{{dy}}{{dx}} $ , Now perform the operation on the given equation very carefully. A simple error in sign can bring you out the wrong result.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

State and explain Coulombs law in electrostatics class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE
