
If \[x = {\cos ^7}\theta \]and \[y = \sin \theta \], then \[\dfrac{{{d^3}x}}{{d{y^3}}} = \]
(A) \[\dfrac{{105}}{4}\sin 4\theta \]
(B) \[\dfrac{{105}}{2}\sin 2\theta \]
(C) \[\dfrac{{105}}{4}\cos 4\theta \]
(D) None of these
Answer
566.4k+ views
Hint: In this question, we have to choose the required solution for the given particular options.
First, we have to differentiate the given x and y terms with respect to x. by using the chain rule we can differentiate the given terms. The given of the question is the value of x and y, they are the functions of trigonometry terms. Here we have to use some trigonometric and differentiation formula to find the required solution. We have mentioned that in the formula used. Then using the all required terms in the required solution, we will get the correct result.
Complete step-by-step answer:
It is given that, \[x = {\cos ^7}\theta \]and \[y = \sin \theta \].
We need to find out the value of \[\dfrac{{{d^3}x}}{{d{y^3}}}\].
Now,\[x = {\cos ^7}\theta \]
Differentiating x with respect to $\theta $, we get,
\[\dfrac{{dx}}{{d\theta }} = 7{\cos ^6}\theta \left( { - \sin \theta } \right) = - 7\sin \theta {\cos ^6}\theta \]……….i)
\[y = \sin \theta \]
Differentiating y with respect to $\theta $, we get,
$\Rightarrow$\[\dfrac{{dy}}{{d\theta }} = \cos \theta \]…………ii)
Here, y depends on the variable $\theta $ and also the variable x depends on the variable $\theta $, then applying chain rule we get,
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}}\]
Using i) and ii) we get,
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{\dfrac{1}{1}}}{{\dfrac{{dx}}{{d\theta }}}} = \cos \theta \times \dfrac{1}{{ - 7\sin \theta {{\cos }^6}\theta }} = \dfrac{1}{{ - 7\sin \theta {{\cos }^5}\theta }}\]
v\[\dfrac{{dx}}{{dy}} = - 7\sin \theta {\cos ^5}\theta \]
Differentiating with respect to y, we get,
$\Rightarrow$\[\dfrac{{{d^2}x}}{{d{y^2}}} = \dfrac{d}{{dy}}\left( { - 7\sin \theta {{\cos }^5}\theta } \right)\]
Let us consider that \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}}\] we get,
\[ = \dfrac{{d\theta }}{{dy}}.\dfrac{d}{{d\theta }}\left( { - 7\sin \theta {{\cos }^5}\theta } \right)\]
Using ii) ,we get,
\[ = \dfrac{1}{{\cos \theta }}\left( { - 7\cos \theta {{\cos }^5}\theta - 7\sin \theta \times 5{{\cos }^4}\theta \left( { - \sin \theta } \right)} \right)\]
if\[y = uv,\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}}v + u\dfrac{{dv}}{{dx}}\] then,
\[ = - 7{\cos ^5}\theta + 35{\sin ^2}\theta {\cos ^3}\theta \]
Since we already know that \[{\sin ^2}\theta = 1 - {\cos ^2}\theta \]
\[ = - 7{\cos ^5}\theta + 35\left( {1 - {{\cos }^2}\theta } \right){\cos ^3}\theta \]
Solving we get,
\[ = - 7{\cos ^5}\theta + 35{\cos ^3}\theta - 35{\cos ^5}\theta \]
Thus we get, \[\dfrac{{{d^2}x}}{{d{y^2}}} = - 42{\cos ^5}\theta + 35{\cos ^3}\theta \]
Differentiating \[\dfrac{{{d^2}x}}{{d{y^2}}}\] with respect to y we get,
\[\dfrac{{{d^3}x}}{{d{y^3}}} = \dfrac{d}{{dy}}\left( { - 42{{\cos }^5}\theta + 35{{\cos }^3}\theta } \right)\]
Let us consider that \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}}\] we get,
\[\dfrac{{{d^3}x}}{{d{y^3}}} = \dfrac{{d\theta }}{{dy}} \times \dfrac{d}{{d\theta }}\left( { - 42{{\cos }^5}\theta + 35{{\cos }^3}\theta } \right)\]
Using ii) we get,
\[ = \dfrac{1}{{\cos \theta }}\left( { - 42 \times 5{{\cos }^4}\theta \left( { - \sin \theta } \right) + 35 \times 3{{\cos }^2}\theta \left( { - \sin \theta } \right)} \right)\]
\[ = 210\sin \theta {\cos ^3}\theta - 105\sin \theta \cos \theta \]
Using the trigonometric formula, \[\cos 2\theta = 2{\cos ^2}\theta - 1\]
\[ = 105\sin \theta \cos \theta \left( {2{{\cos }^2}\theta - 1} \right)\]
Using the trigonometric formula, \[\sin 2\theta = 2\sin \theta \cos \theta \]
\[ = \dfrac{{105}}{2} \times 2\sin \theta \cos \theta \times \cos 2\theta \]
Simplifying we get,
\[ = \dfrac{{105}}{2}\sin 2\theta \cos 2\theta \]
Multiply and divide by 2 we get,
\[ = \dfrac{{105}}{4} \times 2\sin 2\theta \cos 2\theta \]
Hence we get,
\[ = \dfrac{{105}}{4}\sin 4\theta \]
$\therefore $ The option (A) is the correct option.
Note: Chain Rule:
If a variable y depends on the variable z, which itself depends on the variable x (that is y and z are dependent variables), then y, via the intermediate variable of z, depends on x as well. In which case, the chain rule states that: \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dz}} \times \dfrac{{dz}}{{dx}}\].
Differentiation formula:
\[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
\[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]
\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
Trigonometric formula:
\[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
\[\cos 2\theta = 2{\cos ^2}\theta - 1\]
\[\sin 2\theta = 2\sin \theta \cos \theta \]
First, we have to differentiate the given x and y terms with respect to x. by using the chain rule we can differentiate the given terms. The given of the question is the value of x and y, they are the functions of trigonometry terms. Here we have to use some trigonometric and differentiation formula to find the required solution. We have mentioned that in the formula used. Then using the all required terms in the required solution, we will get the correct result.
Complete step-by-step answer:
It is given that, \[x = {\cos ^7}\theta \]and \[y = \sin \theta \].
We need to find out the value of \[\dfrac{{{d^3}x}}{{d{y^3}}}\].
Now,\[x = {\cos ^7}\theta \]
Differentiating x with respect to $\theta $, we get,
\[\dfrac{{dx}}{{d\theta }} = 7{\cos ^6}\theta \left( { - \sin \theta } \right) = - 7\sin \theta {\cos ^6}\theta \]……….i)
\[y = \sin \theta \]
Differentiating y with respect to $\theta $, we get,
$\Rightarrow$\[\dfrac{{dy}}{{d\theta }} = \cos \theta \]…………ii)
Here, y depends on the variable $\theta $ and also the variable x depends on the variable $\theta $, then applying chain rule we get,
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}}\]
Using i) and ii) we get,
$\Rightarrow$\[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{\dfrac{1}{1}}}{{\dfrac{{dx}}{{d\theta }}}} = \cos \theta \times \dfrac{1}{{ - 7\sin \theta {{\cos }^6}\theta }} = \dfrac{1}{{ - 7\sin \theta {{\cos }^5}\theta }}\]
v\[\dfrac{{dx}}{{dy}} = - 7\sin \theta {\cos ^5}\theta \]
Differentiating with respect to y, we get,
$\Rightarrow$\[\dfrac{{{d^2}x}}{{d{y^2}}} = \dfrac{d}{{dy}}\left( { - 7\sin \theta {{\cos }^5}\theta } \right)\]
Let us consider that \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}}\] we get,
\[ = \dfrac{{d\theta }}{{dy}}.\dfrac{d}{{d\theta }}\left( { - 7\sin \theta {{\cos }^5}\theta } \right)\]
Using ii) ,we get,
\[ = \dfrac{1}{{\cos \theta }}\left( { - 7\cos \theta {{\cos }^5}\theta - 7\sin \theta \times 5{{\cos }^4}\theta \left( { - \sin \theta } \right)} \right)\]
if\[y = uv,\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dx}}v + u\dfrac{{dv}}{{dx}}\] then,
\[ = - 7{\cos ^5}\theta + 35{\sin ^2}\theta {\cos ^3}\theta \]
Since we already know that \[{\sin ^2}\theta = 1 - {\cos ^2}\theta \]
\[ = - 7{\cos ^5}\theta + 35\left( {1 - {{\cos }^2}\theta } \right){\cos ^3}\theta \]
Solving we get,
\[ = - 7{\cos ^5}\theta + 35{\cos ^3}\theta - 35{\cos ^5}\theta \]
Thus we get, \[\dfrac{{{d^2}x}}{{d{y^2}}} = - 42{\cos ^5}\theta + 35{\cos ^3}\theta \]
Differentiating \[\dfrac{{{d^2}x}}{{d{y^2}}}\] with respect to y we get,
\[\dfrac{{{d^3}x}}{{d{y^3}}} = \dfrac{d}{{dy}}\left( { - 42{{\cos }^5}\theta + 35{{\cos }^3}\theta } \right)\]
Let us consider that \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{d\theta }} \times \dfrac{{d\theta }}{{dx}}\] we get,
\[\dfrac{{{d^3}x}}{{d{y^3}}} = \dfrac{{d\theta }}{{dy}} \times \dfrac{d}{{d\theta }}\left( { - 42{{\cos }^5}\theta + 35{{\cos }^3}\theta } \right)\]
Using ii) we get,
\[ = \dfrac{1}{{\cos \theta }}\left( { - 42 \times 5{{\cos }^4}\theta \left( { - \sin \theta } \right) + 35 \times 3{{\cos }^2}\theta \left( { - \sin \theta } \right)} \right)\]
\[ = 210\sin \theta {\cos ^3}\theta - 105\sin \theta \cos \theta \]
Using the trigonometric formula, \[\cos 2\theta = 2{\cos ^2}\theta - 1\]
\[ = 105\sin \theta \cos \theta \left( {2{{\cos }^2}\theta - 1} \right)\]
Using the trigonometric formula, \[\sin 2\theta = 2\sin \theta \cos \theta \]
\[ = \dfrac{{105}}{2} \times 2\sin \theta \cos \theta \times \cos 2\theta \]
Simplifying we get,
\[ = \dfrac{{105}}{2}\sin 2\theta \cos 2\theta \]
Multiply and divide by 2 we get,
\[ = \dfrac{{105}}{4} \times 2\sin 2\theta \cos 2\theta \]
Hence we get,
\[ = \dfrac{{105}}{4}\sin 4\theta \]
$\therefore $ The option (A) is the correct option.
Note: Chain Rule:
If a variable y depends on the variable z, which itself depends on the variable x (that is y and z are dependent variables), then y, via the intermediate variable of z, depends on x as well. In which case, the chain rule states that: \[\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dz}} \times \dfrac{{dz}}{{dx}}\].
Differentiation formula:
\[\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}\]
\[\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x\]
\[\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x\]
Trigonometric formula:
\[{\sin ^2}\theta + {\cos ^2}\theta = 1\]
\[\cos 2\theta = 2{\cos ^2}\theta - 1\]
\[\sin 2\theta = 2\sin \theta \cos \theta \]
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

