
If x and y are acute angles such that cos x + cos y = $ \dfrac{3}{2} $ and sin x + sin y = $ \dfrac{3}{4} $ , then find the value of sin (x + y):
(a) $ \dfrac{2}{5} $
(b) $ \dfrac{3}{4} $
(c) $ \dfrac{3}{5} $
(d) $ \dfrac{4}{5} $
Answer
582.6k+ views
Hint: Use the formula cos x + cos y = $ 2\cos \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) $ and sin x + sin y = $ 2\sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) $ to get two equations. Divide these equations and then use the formula $ \sin \left( x+y \right)=\dfrac{2tan\left( \dfrac{x+y}{2} \right)}{1+ta{{n}^{2}}\left( \dfrac{x+y}{2} \right)} $ to get the final answer.
Complete step-by-step answer:
In this question, we are given that x and y are acute angles such that cos x + cos y = $ \dfrac{3}{2} $ and sin x + sin y = $ \dfrac{3}{4} $ .
We need to find the value of sin (x + y).
We already know that for two angles x and y, the sum of their cosines is equal to the double of the product of the cosine of half of their sum and the cosine of half of their difference.
i.e. cos x + cos y = $ 2\cos \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) $
Using this property, we will get the following:
cos x + cos y = $ \dfrac{3}{2} $
$ 2\cos \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)=\dfrac{3}{2} $
$ \cos \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)=\dfrac{3}{4} $ …(1)
We also know that for two angles x and y, the sum of their sines is equal to the double of the product of the sine of half of their sum and the cosine of half of their difference.
i.e. sin x + sin y = $ 2\sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) $
Using this property, we will get the following:
sin x + sin y = $ \dfrac{3}{4} $
$ 2\sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)=\dfrac{3}{4} $
$ \sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)=\dfrac{3}{8} $ …(2)
Dividing equation (2) by equation (1), we will get the following:
$ \dfrac{\sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)}{\cos \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)}=\dfrac{\dfrac{3}{8}}{\dfrac{3}{4}} $
$ tan\left( \dfrac{x+y}{2} \right)=\dfrac{1}{2} $
Now, we know the formula: $ \sin \left( x+y \right)=\dfrac{2tan\left( \dfrac{x+y}{2} \right)}{1+ta{{n}^{2}}\left( \dfrac{x+y}{2} \right)} $
Substituting $ tan\left( \dfrac{x+y}{2} \right)=\dfrac{1}{2} $ in the above formula, we will get the following:
$ \sin \left( x+y \right)=\dfrac{2\left( \dfrac{1}{2} \right)}{1+\dfrac{1}{4}}=\dfrac{4}{5} $
Hence, $ \sin \left( x+y \right)=\dfrac{4}{5} $
So, option (d) is correct.
Note: For solving such problems, students must first figure out the formulae that are to be used. The signs in the formulae must be taken care of and the formulae must be remembered properly, as any mistake in sign can lead to wrong answers.Here we try to use the transformation formulae of trigonometric functions.
Complete step-by-step answer:
In this question, we are given that x and y are acute angles such that cos x + cos y = $ \dfrac{3}{2} $ and sin x + sin y = $ \dfrac{3}{4} $ .
We need to find the value of sin (x + y).
We already know that for two angles x and y, the sum of their cosines is equal to the double of the product of the cosine of half of their sum and the cosine of half of their difference.
i.e. cos x + cos y = $ 2\cos \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) $
Using this property, we will get the following:
cos x + cos y = $ \dfrac{3}{2} $
$ 2\cos \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)=\dfrac{3}{2} $
$ \cos \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)=\dfrac{3}{4} $ …(1)
We also know that for two angles x and y, the sum of their sines is equal to the double of the product of the sine of half of their sum and the cosine of half of their difference.
i.e. sin x + sin y = $ 2\sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right) $
Using this property, we will get the following:
sin x + sin y = $ \dfrac{3}{4} $
$ 2\sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)=\dfrac{3}{4} $
$ \sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)=\dfrac{3}{8} $ …(2)
Dividing equation (2) by equation (1), we will get the following:
$ \dfrac{\sin \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)}{\cos \left( \dfrac{x+y}{2} \right)\cos \left( \dfrac{x-y}{2} \right)}=\dfrac{\dfrac{3}{8}}{\dfrac{3}{4}} $
$ tan\left( \dfrac{x+y}{2} \right)=\dfrac{1}{2} $
Now, we know the formula: $ \sin \left( x+y \right)=\dfrac{2tan\left( \dfrac{x+y}{2} \right)}{1+ta{{n}^{2}}\left( \dfrac{x+y}{2} \right)} $
Substituting $ tan\left( \dfrac{x+y}{2} \right)=\dfrac{1}{2} $ in the above formula, we will get the following:
$ \sin \left( x+y \right)=\dfrac{2\left( \dfrac{1}{2} \right)}{1+\dfrac{1}{4}}=\dfrac{4}{5} $
Hence, $ \sin \left( x+y \right)=\dfrac{4}{5} $
So, option (d) is correct.
Note: For solving such problems, students must first figure out the formulae that are to be used. The signs in the formulae must be taken care of and the formulae must be remembered properly, as any mistake in sign can lead to wrong answers.Here we try to use the transformation formulae of trigonometric functions.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

