
If $x = a\left( {\cos 2t + 2t\sin 2t} \right)$ and $y = a\left( {\sin 2t - 2t\cos 2t} \right)$. Find the second order derivative.
Answer
564.9k+ views
Hint: The given pair equations are in the parameterized form where both dependent and independent variables are expressed in terms of a parameter $t$. Determine the parametric derivative of $x$ with respect to $t$ and derivative of $y$ with respect to $t$. Use the values of $\dfrac{{dx}}{{dt}}$ and $\dfrac{{dy}}{{dt}}$ obtained during the calculation to determine the value of $\dfrac{{{d^2}y}}{{d{x^2}}}$.
Complete step-by-step answer:
If $f\left( x \right)$ and $g\left( x \right)$ are two differentiable functions then by product rule,
$\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) + f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)$
The first given parametric equation is $x = a\left( {\cos 2t + 2t\sin 2t} \right)$.
Differentiating both sides with respect to $t$ using product rule if needed,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left[ {a\left( {\cos 2t + 2t\sin 2t} \right)} \right]\]
As $a$ is constant take it out because differentiation of constant is 0.
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - 2\sin 2t + 4t\cos 2t + 2\sin 2t} \right)\]
Simplify the expression,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = 4at\cos 2t\]..........….. (1)
The second given parametric equation is $y = a\left( {\sin 2t - 2t\cos 2t} \right)$.
Differentiating both sides with respect to $t$ using product rule if needed,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left[ {a\left( {\sin 2t - 2t\cos 2t} \right)} \right]\]
As $a$ is constant take it out because differentiation of constant is 0.
\[ \Rightarrow \dfrac{{dy}}{{dt}} = a\left( {2\cos 2t + 4t\sin 2t - 2\cos 2t} \right)\]
Simplify the expression,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = 4at\sin 2t\].........….. (2)
We know that,
$\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$
Substitute the values of $\dfrac{{dy}}{{dt}}$ and $\dfrac{{dx}}{{dt}}$ obtained from equation (1) and (2),
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4at\sin 2t}}{{4at\cos 2t}}$
Cancel out the common terms,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \tan t$
Differentiate again with respect to $x$,
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {\tan 2t} \right)$
Use the formula $\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$,
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{\dfrac{d}{{dt}}\left( {\tan t} \right)}}{{\dfrac{{dt}}{{dx}}}}$
Substitute the value of $\dfrac{{dx}}{{dt}}$ from equation (1),
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{{{\sec }^2}t}}{{4at\cos t}}$
Substitute $\dfrac{1}{{\cos t}} = \sec t$,
$\therefore \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{{{\sec }^3}t}}{{4at}}$
Hence, the second derivative is $\dfrac{{{{\sec }^3}t}}{{4at}}$.
Note: Parametric equations are used when an equation cannot be expressed either in implicit or explicit form. That is exactly why we can express $\dfrac{{dy}}{{dx}}$ in terms of $\dfrac{{dy}}{{dt}}$ and $\dfrac{{dx}}{{dt}}$.
Complete step-by-step answer:
If $f\left( x \right)$ and $g\left( x \right)$ are two differentiable functions then by product rule,
$\dfrac{d}{{dx}}\left[ {f\left( x \right)g\left( x \right)} \right] = g\left( x \right)\dfrac{d}{{dx}}f\left( x \right) + f\left( x \right)\dfrac{d}{{dx}}g\left( x \right)$
The first given parametric equation is $x = a\left( {\cos 2t + 2t\sin 2t} \right)$.
Differentiating both sides with respect to $t$ using product rule if needed,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = \dfrac{d}{{dt}}\left[ {a\left( {\cos 2t + 2t\sin 2t} \right)} \right]\]
As $a$ is constant take it out because differentiation of constant is 0.
\[ \Rightarrow \dfrac{{dx}}{{dt}} = a\left( { - 2\sin 2t + 4t\cos 2t + 2\sin 2t} \right)\]
Simplify the expression,
\[ \Rightarrow \dfrac{{dx}}{{dt}} = 4at\cos 2t\]..........….. (1)
The second given parametric equation is $y = a\left( {\sin 2t - 2t\cos 2t} \right)$.
Differentiating both sides with respect to $t$ using product rule if needed,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = \dfrac{d}{{dt}}\left[ {a\left( {\sin 2t - 2t\cos 2t} \right)} \right]\]
As $a$ is constant take it out because differentiation of constant is 0.
\[ \Rightarrow \dfrac{{dy}}{{dt}} = a\left( {2\cos 2t + 4t\sin 2t - 2\cos 2t} \right)\]
Simplify the expression,
\[ \Rightarrow \dfrac{{dy}}{{dt}} = 4at\sin 2t\].........….. (2)
We know that,
$\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$
Substitute the values of $\dfrac{{dy}}{{dt}}$ and $\dfrac{{dx}}{{dt}}$ obtained from equation (1) and (2),
$ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{4at\sin 2t}}{{4at\cos 2t}}$
Cancel out the common terms,
$ \Rightarrow \dfrac{{dy}}{{dx}} = \tan t$
Differentiate again with respect to $x$,
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}\left( {\tan 2t} \right)$
Use the formula $\dfrac{{dy}}{{dx}} = \dfrac{{\dfrac{{dy}}{{dt}}}}{{\dfrac{{dx}}{{dt}}}}$,
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{\dfrac{d}{{dt}}\left( {\tan t} \right)}}{{\dfrac{{dt}}{{dx}}}}$
Substitute the value of $\dfrac{{dx}}{{dt}}$ from equation (1),
$ \Rightarrow \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{{{\sec }^2}t}}{{4at\cos t}}$
Substitute $\dfrac{1}{{\cos t}} = \sec t$,
$\therefore \dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{{{{\sec }^3}t}}{{4at}}$
Hence, the second derivative is $\dfrac{{{{\sec }^3}t}}{{4at}}$.
Note: Parametric equations are used when an equation cannot be expressed either in implicit or explicit form. That is exactly why we can express $\dfrac{{dy}}{{dx}}$ in terms of $\dfrac{{dy}}{{dt}}$ and $\dfrac{{dx}}{{dt}}$.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

