
If $x = 7 - 4\sqrt 3 $ , the value of ${x^2} + \dfrac{1}{{{x^2}}}$ will be
A. 146
B. 148
C. 194
D. 196
Answer
527.1k+ views
Hint:For solving this particular problem , use the given equation . find the reciprocal of the given statement , simplify the equation , rationalise the equation and then substitutes these value to find the value of ${x^2} + \dfrac{1}{{{x^2}}}$ .
Complete solution step by step:
It is given that ,
$x = 7 - 4\sqrt 3 $ (given)
Therefore , we can say that ,
$\dfrac{1}{x} = \dfrac{1}{{7 - 4\sqrt 3 }} \times \dfrac{{7 + 4\sqrt 3 }}{{7 + 4\sqrt 3 }}$
$
= \dfrac{{7 - 4\sqrt 3 }}{{49 - 48}} \\
= 7 + 4\sqrt 3 \\
$
Now ,
$ \Rightarrow x + \dfrac{1}{x} = (7 - 4\sqrt 3 ) + (7 + 4\sqrt 3 )$
$ = 14$
Now ,
$ \Rightarrow {\left( {x + \dfrac{1}{x}} \right)^2} = {(14)^2}$
$
\Rightarrow {x^2} + \dfrac{1}{{{x^2}}} + 2 = 196 \\
\Rightarrow {x^2} + \dfrac{1}{{{x^2}}} = 196 - 2 \\
$
$ = 194$
Hence we get our desired solution.
And we can say that option C is the correct option.
Additional Information:
The expressions are formed by performing operations like addition,
subtraction, multiplication and division on the variables and constants.
•An equation may be a condition on a variable (or variables) specified two expressions within the variable (variables) have equal value.
•The value of the variable that the equation is satisfied is termed the answer or root of the equation.
•An equation remains the same if the LHS and also the RHS are interchanged.
•Transposing means moving from one side to the opposite. When a term is transposed from one side of the equation to the opposite side, its sign gets changed.
•Transposition of an expression is administered within the same way because the transposition of a term.
Note: For simplifying the equation , we rationalise the equation . “Rationalizing the denominator” is after we move a root (like a root or cube root) from the underside of a fraction to the highest. we will multiply both top and bottom by the conjugate of the denominator , which cannot change the worth of the fraction.
Complete solution step by step:
It is given that ,
$x = 7 - 4\sqrt 3 $ (given)
Therefore , we can say that ,
$\dfrac{1}{x} = \dfrac{1}{{7 - 4\sqrt 3 }} \times \dfrac{{7 + 4\sqrt 3 }}{{7 + 4\sqrt 3 }}$
$
= \dfrac{{7 - 4\sqrt 3 }}{{49 - 48}} \\
= 7 + 4\sqrt 3 \\
$
Now ,
$ \Rightarrow x + \dfrac{1}{x} = (7 - 4\sqrt 3 ) + (7 + 4\sqrt 3 )$
$ = 14$
Now ,
$ \Rightarrow {\left( {x + \dfrac{1}{x}} \right)^2} = {(14)^2}$
$
\Rightarrow {x^2} + \dfrac{1}{{{x^2}}} + 2 = 196 \\
\Rightarrow {x^2} + \dfrac{1}{{{x^2}}} = 196 - 2 \\
$
$ = 194$
Hence we get our desired solution.
And we can say that option C is the correct option.
Additional Information:
The expressions are formed by performing operations like addition,
subtraction, multiplication and division on the variables and constants.
•An equation may be a condition on a variable (or variables) specified two expressions within the variable (variables) have equal value.
•The value of the variable that the equation is satisfied is termed the answer or root of the equation.
•An equation remains the same if the LHS and also the RHS are interchanged.
•Transposing means moving from one side to the opposite. When a term is transposed from one side of the equation to the opposite side, its sign gets changed.
•Transposition of an expression is administered within the same way because the transposition of a term.
Note: For simplifying the equation , we rationalise the equation . “Rationalizing the denominator” is after we move a root (like a root or cube root) from the underside of a fraction to the highest. we will multiply both top and bottom by the conjugate of the denominator , which cannot change the worth of the fraction.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

If overrightarrow a overrightarrow b overrightarrow class 12 maths CBSE

If a b and c are unit coplanar vectors then left 2a class 12 maths CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

