
If $x = 7 - 4\sqrt 3 $ , the value of ${x^2} + \dfrac{1}{{{x^2}}}$ will be
A. 146
B. 148
C. 194
D. 196
Answer
534.3k+ views
Hint:For solving this particular problem , use the given equation . find the reciprocal of the given statement , simplify the equation , rationalise the equation and then substitutes these value to find the value of ${x^2} + \dfrac{1}{{{x^2}}}$ .
Complete solution step by step:
It is given that ,
$x = 7 - 4\sqrt 3 $ (given)
Therefore , we can say that ,
$\dfrac{1}{x} = \dfrac{1}{{7 - 4\sqrt 3 }} \times \dfrac{{7 + 4\sqrt 3 }}{{7 + 4\sqrt 3 }}$
$
= \dfrac{{7 - 4\sqrt 3 }}{{49 - 48}} \\
= 7 + 4\sqrt 3 \\
$
Now ,
$ \Rightarrow x + \dfrac{1}{x} = (7 - 4\sqrt 3 ) + (7 + 4\sqrt 3 )$
$ = 14$
Now ,
$ \Rightarrow {\left( {x + \dfrac{1}{x}} \right)^2} = {(14)^2}$
$
\Rightarrow {x^2} + \dfrac{1}{{{x^2}}} + 2 = 196 \\
\Rightarrow {x^2} + \dfrac{1}{{{x^2}}} = 196 - 2 \\
$
$ = 194$
Hence we get our desired solution.
And we can say that option C is the correct option.
Additional Information:
The expressions are formed by performing operations like addition,
subtraction, multiplication and division on the variables and constants.
•An equation may be a condition on a variable (or variables) specified two expressions within the variable (variables) have equal value.
•The value of the variable that the equation is satisfied is termed the answer or root of the equation.
•An equation remains the same if the LHS and also the RHS are interchanged.
•Transposing means moving from one side to the opposite. When a term is transposed from one side of the equation to the opposite side, its sign gets changed.
•Transposition of an expression is administered within the same way because the transposition of a term.
Note: For simplifying the equation , we rationalise the equation . “Rationalizing the denominator” is after we move a root (like a root or cube root) from the underside of a fraction to the highest. we will multiply both top and bottom by the conjugate of the denominator , which cannot change the worth of the fraction.
Complete solution step by step:
It is given that ,
$x = 7 - 4\sqrt 3 $ (given)
Therefore , we can say that ,
$\dfrac{1}{x} = \dfrac{1}{{7 - 4\sqrt 3 }} \times \dfrac{{7 + 4\sqrt 3 }}{{7 + 4\sqrt 3 }}$
$
= \dfrac{{7 - 4\sqrt 3 }}{{49 - 48}} \\
= 7 + 4\sqrt 3 \\
$
Now ,
$ \Rightarrow x + \dfrac{1}{x} = (7 - 4\sqrt 3 ) + (7 + 4\sqrt 3 )$
$ = 14$
Now ,
$ \Rightarrow {\left( {x + \dfrac{1}{x}} \right)^2} = {(14)^2}$
$
\Rightarrow {x^2} + \dfrac{1}{{{x^2}}} + 2 = 196 \\
\Rightarrow {x^2} + \dfrac{1}{{{x^2}}} = 196 - 2 \\
$
$ = 194$
Hence we get our desired solution.
And we can say that option C is the correct option.
Additional Information:
The expressions are formed by performing operations like addition,
subtraction, multiplication and division on the variables and constants.
•An equation may be a condition on a variable (or variables) specified two expressions within the variable (variables) have equal value.
•The value of the variable that the equation is satisfied is termed the answer or root of the equation.
•An equation remains the same if the LHS and also the RHS are interchanged.
•Transposing means moving from one side to the opposite. When a term is transposed from one side of the equation to the opposite side, its sign gets changed.
•Transposition of an expression is administered within the same way because the transposition of a term.
Note: For simplifying the equation , we rationalise the equation . “Rationalizing the denominator” is after we move a root (like a root or cube root) from the underside of a fraction to the highest. we will multiply both top and bottom by the conjugate of the denominator , which cannot change the worth of the fraction.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

