
If $ x = 3 - 2\sqrt 2 $ , find the value of $ \sqrt x + \dfrac{1}{{\sqrt x }} $
Answer
530.4k+ views
Hint: To solve the given question, first we will write the given value of $ x $ and then try to solve with the $ x $ to find any of the parts of the given unfind expression. We will also rationalise the terms with square roots. We will solve until we will achieve the roots of $ x $ .
Complete step by step solution:
Given that:
$ x = 3 - 2\sqrt 2 $
$
\Rightarrow \dfrac{1}{x} = \dfrac{1}{{3 - 2\sqrt 2 }} \\
\Rightarrow \dfrac{1}{x} = \dfrac{1}{{3 - 2\sqrt 2 }} \times \dfrac{{3 + 2\sqrt 2 }}{{3 + 2\sqrt 2 }} \;
$
In the above equation, to solve for the square roots we rationalised the terms with square roots.
$
\Rightarrow \dfrac{1}{x} = \dfrac{{3 + 2\sqrt 2 }}{{(3 - 2\sqrt 2 )(3 + 2\sqrt 2 }} \\
\Rightarrow \dfrac{1}{x} = \dfrac{{3 + 2\sqrt 2 }}{{9 - 8}} = 3 + 2\sqrt 2 \;
$
Now,
we have the values of $ x $ and $ \dfrac{1}{x} $ , so we can add both:
$
\therefore x + \dfrac{1}{x} = 3 - 2\sqrt 2 + 3 + 2\sqrt 2 \\
\Rightarrow x + \dfrac{1}{x} = 6 \;
$
we can add 2 in both L.H.S and R.H.S:
$
\Rightarrow x + \dfrac{1}{x} + 2 = 6 + 2 \\
\Rightarrow {(\sqrt x )^2} + {(\dfrac{1}{{\sqrt x }})^2} + 2.\sqrt x .\dfrac{1}{{\sqrt x }} = 8 \\
\Rightarrow {(\sqrt x + \dfrac{1}{{\sqrt x }})^2} = 8 \;
$
Now, remove the square of L.H.S by doing the square root of R.H.S:
$ \Rightarrow \sqrt x + \dfrac{1}{{\sqrt x }} = \pm \sqrt 8 $
$ \therefore \sqrt x + \dfrac{1}{{\sqrt x }} = \pm 2\sqrt 2 $
Hence, the value of $ \sqrt x + \dfrac{1}{{\sqrt x }} $ is $ \pm 2\sqrt 2 $ .
So, the correct answer is “ $ \pm 2\sqrt 2 $ ”.
Note: We can get rid of a square root by squaring. (Or cube roots by cubing, etc) But Warning: this can sometimes create "solutions" which don't actually work when we put them into the original equation. So we need to Check!
Complete step by step solution:
Given that:
$ x = 3 - 2\sqrt 2 $
$
\Rightarrow \dfrac{1}{x} = \dfrac{1}{{3 - 2\sqrt 2 }} \\
\Rightarrow \dfrac{1}{x} = \dfrac{1}{{3 - 2\sqrt 2 }} \times \dfrac{{3 + 2\sqrt 2 }}{{3 + 2\sqrt 2 }} \;
$
In the above equation, to solve for the square roots we rationalised the terms with square roots.
$
\Rightarrow \dfrac{1}{x} = \dfrac{{3 + 2\sqrt 2 }}{{(3 - 2\sqrt 2 )(3 + 2\sqrt 2 }} \\
\Rightarrow \dfrac{1}{x} = \dfrac{{3 + 2\sqrt 2 }}{{9 - 8}} = 3 + 2\sqrt 2 \;
$
Now,
we have the values of $ x $ and $ \dfrac{1}{x} $ , so we can add both:
$
\therefore x + \dfrac{1}{x} = 3 - 2\sqrt 2 + 3 + 2\sqrt 2 \\
\Rightarrow x + \dfrac{1}{x} = 6 \;
$
we can add 2 in both L.H.S and R.H.S:
$
\Rightarrow x + \dfrac{1}{x} + 2 = 6 + 2 \\
\Rightarrow {(\sqrt x )^2} + {(\dfrac{1}{{\sqrt x }})^2} + 2.\sqrt x .\dfrac{1}{{\sqrt x }} = 8 \\
\Rightarrow {(\sqrt x + \dfrac{1}{{\sqrt x }})^2} = 8 \;
$
Now, remove the square of L.H.S by doing the square root of R.H.S:
$ \Rightarrow \sqrt x + \dfrac{1}{{\sqrt x }} = \pm \sqrt 8 $
$ \therefore \sqrt x + \dfrac{1}{{\sqrt x }} = \pm 2\sqrt 2 $
Hence, the value of $ \sqrt x + \dfrac{1}{{\sqrt x }} $ is $ \pm 2\sqrt 2 $ .
So, the correct answer is “ $ \pm 2\sqrt 2 $ ”.
Note: We can get rid of a square root by squaring. (Or cube roots by cubing, etc) But Warning: this can sometimes create "solutions" which don't actually work when we put them into the original equation. So we need to Check!
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Which one of the following groups comprises states class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

A couple went for a picnic They have 5 sons and each class 8 maths CBSE

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

